Cargando…
Regulation of stress signaling pathways by protein lipoxidation
Enzymatic and non-enzymatic oxidation of unsaturated fatty acids gives rise to reactive species that covalently modify nucleophilic residues within redox sensitive protein sensors in a process called lipoxidation. This triggers adaptive signaling pathways that ultimately lead to increased resistance...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859545/ https://www.ncbi.nlm.nih.gov/pubmed/30709792 http://dx.doi.org/10.1016/j.redox.2019.101114 |
Sumario: | Enzymatic and non-enzymatic oxidation of unsaturated fatty acids gives rise to reactive species that covalently modify nucleophilic residues within redox sensitive protein sensors in a process called lipoxidation. This triggers adaptive signaling pathways that ultimately lead to increased resistance to stress. In this graphical review, we will provide an overview of pathways affected by protein lipoxidation and the key signaling proteins being altered, focusing on the KEAP1-NRF2 and heat shock response pathways. We review the mechanisms by which lipid peroxidation products can serve as second messengers and evoke cellular responses via covalent modification of key sensors of altered cellular environment, ultimately leading to adaptation to stress. |
---|