Cargando…
Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation
BACKGROUND: Predicting impact of plant tissue culture media components on explant proliferation is important especially in commercial scale for optimizing efficient culture media. Previous studies have focused on predicting the impact of media components on explant growth via conventional multi-laye...
Autores principales: | Jamshidi, Saeid, Yadollahi, Abbas, Arab, Mohammad Mehdi, Soltani, Mohammad, Eftekhari, Maliheh, Sabzalipoor, Hamed, Sheikhi, Abdollatif, Shiri, Jalal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859635/ https://www.ncbi.nlm.nih.gov/pubmed/31832078 http://dx.doi.org/10.1186/s13007-019-0520-y |
Ejemplares similares
-
High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks
por: Jamshidi, Saeid, et al.
Publicado: (2020) -
Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models
por: Jamshidi, S., et al.
Publicado: (2016) -
Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm
por: Arab, Mohammad Mehdi, et al.
Publicado: (2018) -
Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)
por: Arab, Mohammad M., et al.
Publicado: (2017) -
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock
por: Arab, Mohammad M., et al.
Publicado: (2016)