Cargando…
Functional genomics of simian malaria parasites and host–parasite interactions
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859816/ https://www.ncbi.nlm.nih.gov/pubmed/31241151 http://dx.doi.org/10.1093/bfgp/elz013 |
Sumario: | Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans. |
---|