Cargando…
A structure-based model for the prediction of protein–RNA binding affinity
Protein–RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have curated a binding affinity data set of 40 protein–RNA complexes, for which at least one unbound partner is available in the docking benchmark. The data set covers a wide affinit...
Autores principales: | Nithin, Chandran, Mukherjee, Sunandan, Bahadur, Ranjit Prasad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859855/ https://www.ncbi.nlm.nih.gov/pubmed/31395671 http://dx.doi.org/10.1261/rna.071779.119 |
Ejemplares similares
-
Probing binding hot spots at protein–RNA recognition sites
por: Barik, Amita, et al.
Publicado: (2016) -
NCodR: A multi-class support vector machine classification to distinguish non-coding RNAs in Viridiplantae
por: Nithin, Chandran, et al.
Publicado: (2022) -
An account of solvent accessibility in protein-RNA recognition
por: Mukherjee, Sunandan, et al.
Publicado: (2018) -
Computational modeling of RNA 3D structure based on experimental data
por: Ponce-Salvatierra, Almudena, et al.
Publicado: (2019) -
QRNAS: software tool for refinement of nucleic acid structures
por: Stasiewicz, Juliusz, et al.
Publicado: (2019)