Cargando…
3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods
Boosting is a family of supervised learning algorithm that convert a set of weak learners into a single strong one. It is popular in the field of object tracking, where its main purpose is to extract the position, motion, and trajectory from various features of interest within a sequence of video fr...
Autores principales: | Wei, Ye, Peng, Zirong, Kühbach, Markus, Breen, Andrew, Legros, Marc, Larranaga, Melvyn, Mompiou, Frederic, Gault, Baptiste |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6860927/ https://www.ncbi.nlm.nih.gov/pubmed/31738784 http://dx.doi.org/10.1371/journal.pone.0225041 |
Ejemplares similares
-
Open and strong-scaling tools for atom-probe crystallography: high-throughput methods for indexing crystal structure and orientation
por: Kühbach, Markus, et al.
Publicado: (2021) -
Atomic motifs govern the decoration of grain boundaries by interstitial solutes
por: Zhou, Xuyang, et al.
Publicado: (2023) -
In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal
por: Chu, Shufen, et al.
Publicado: (2022) -
Engineering of atomic-scale flexoelectricity at grain boundaries
por: Wu, Mei, et al.
Publicado: (2022) -
Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets
por: Zhang, Wei, et al.
Publicado: (2021)