Cargando…
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
Human-in-the-loop (HITL) AI may enable an ideal symbiosis of human experts and AI models, harnessing the advantages of both while at the same time overcoming their respective limitations. The purpose of this study was to investigate a novel collective intelligence technology designed to amplify the...
Autores principales: | Patel, Bhavik N., Rosenberg, Louis, Willcox, Gregg, Baltaxe, David, Lyons, Mimi, Irvin, Jeremy, Rajpurkar, Pranav, Amrhein, Timothy, Gupta, Rajan, Halabi, Safwan, Langlotz, Curtis, Lo, Edward, Mammarappallil, Joseph, Mariano, A. J., Riley, Geoffrey, Seekins, Jayne, Shen, Luyao, Zucker, Evan, Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861262/ https://www.ncbi.nlm.nih.gov/pubmed/31754637 http://dx.doi.org/10.1038/s41746-019-0189-7 |
Ejemplares similares
-
Author Correction: Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
por: Rajpurkar, Pranav, et al.
Publicado: (2018) -
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
por: Bien, Nicholas, et al.
Publicado: (2018) -
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
por: Tiu, Ekin, et al.
Publicado: (2022)