Cargando…

Validated inference of smoking habits from blood with a finite DNA methylation marker set

Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are...

Descripción completa

Detalles Bibliográficos
Autores principales: Maas, Silvana C. E., Vidaki, Athina, Wilson, Rory, Teumer, Alexander, Liu, Fan, van Meurs, Joyce B. J., Uitterlinden, André G., Boomsma, Dorret I., de Geus, Eco J. C., Willemsen, Gonneke, van Dongen, Jenny, van der Kallen, Carla J. H., Slagboom, P. Eline, Beekman, Marian, van Heemst, Diana, van den Berg, Leonard H., Duijts, Liesbeth, Jaddoe, Vincent W. V., Ladwig, Karl-Heinz, Kunze, Sonja, Peters, Annette, Ikram, M. Arfan, Grabe, Hans J., Felix, Janine F., Waldenberger, Melanie, Franco, Oscar H., Ghanbari, Mohsen, Kayser, Manfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861351/
https://www.ncbi.nlm.nih.gov/pubmed/31494793
http://dx.doi.org/10.1007/s10654-019-00555-w
_version_ 1783471336696315904
author Maas, Silvana C. E.
Vidaki, Athina
Wilson, Rory
Teumer, Alexander
Liu, Fan
van Meurs, Joyce B. J.
Uitterlinden, André G.
Boomsma, Dorret I.
de Geus, Eco J. C.
Willemsen, Gonneke
van Dongen, Jenny
van der Kallen, Carla J. H.
Slagboom, P. Eline
Beekman, Marian
van Heemst, Diana
van den Berg, Leonard H.
Duijts, Liesbeth
Jaddoe, Vincent W. V.
Ladwig, Karl-Heinz
Kunze, Sonja
Peters, Annette
Ikram, M. Arfan
Grabe, Hans J.
Felix, Janine F.
Waldenberger, Melanie
Franco, Oscar H.
Ghanbari, Mohsen
Kayser, Manfred
author_facet Maas, Silvana C. E.
Vidaki, Athina
Wilson, Rory
Teumer, Alexander
Liu, Fan
van Meurs, Joyce B. J.
Uitterlinden, André G.
Boomsma, Dorret I.
de Geus, Eco J. C.
Willemsen, Gonneke
van Dongen, Jenny
van der Kallen, Carla J. H.
Slagboom, P. Eline
Beekman, Marian
van Heemst, Diana
van den Berg, Leonard H.
Duijts, Liesbeth
Jaddoe, Vincent W. V.
Ladwig, Karl-Heinz
Kunze, Sonja
Peters, Annette
Ikram, M. Arfan
Grabe, Hans J.
Felix, Janine F.
Waldenberger, Melanie
Franco, Oscar H.
Ghanbari, Mohsen
Kayser, Manfred
author_sort Maas, Silvana C. E.
collection PubMed
description Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUC(crossvalidation) 0.925 ± 0.021, AUC(externalvalidation)0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10654-019-00555-w) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6861351
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-68613512019-12-03 Validated inference of smoking habits from blood with a finite DNA methylation marker set Maas, Silvana C. E. Vidaki, Athina Wilson, Rory Teumer, Alexander Liu, Fan van Meurs, Joyce B. J. Uitterlinden, André G. Boomsma, Dorret I. de Geus, Eco J. C. Willemsen, Gonneke van Dongen, Jenny van der Kallen, Carla J. H. Slagboom, P. Eline Beekman, Marian van Heemst, Diana van den Berg, Leonard H. Duijts, Liesbeth Jaddoe, Vincent W. V. Ladwig, Karl-Heinz Kunze, Sonja Peters, Annette Ikram, M. Arfan Grabe, Hans J. Felix, Janine F. Waldenberger, Melanie Franco, Oscar H. Ghanbari, Mohsen Kayser, Manfred Eur J Epidemiol Methods Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUC(crossvalidation) 0.925 ± 0.021, AUC(externalvalidation)0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10654-019-00555-w) contains supplementary material, which is available to authorized users. Springer Netherlands 2019-09-07 2019 /pmc/articles/PMC6861351/ /pubmed/31494793 http://dx.doi.org/10.1007/s10654-019-00555-w Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Methods
Maas, Silvana C. E.
Vidaki, Athina
Wilson, Rory
Teumer, Alexander
Liu, Fan
van Meurs, Joyce B. J.
Uitterlinden, André G.
Boomsma, Dorret I.
de Geus, Eco J. C.
Willemsen, Gonneke
van Dongen, Jenny
van der Kallen, Carla J. H.
Slagboom, P. Eline
Beekman, Marian
van Heemst, Diana
van den Berg, Leonard H.
Duijts, Liesbeth
Jaddoe, Vincent W. V.
Ladwig, Karl-Heinz
Kunze, Sonja
Peters, Annette
Ikram, M. Arfan
Grabe, Hans J.
Felix, Janine F.
Waldenberger, Melanie
Franco, Oscar H.
Ghanbari, Mohsen
Kayser, Manfred
Validated inference of smoking habits from blood with a finite DNA methylation marker set
title Validated inference of smoking habits from blood with a finite DNA methylation marker set
title_full Validated inference of smoking habits from blood with a finite DNA methylation marker set
title_fullStr Validated inference of smoking habits from blood with a finite DNA methylation marker set
title_full_unstemmed Validated inference of smoking habits from blood with a finite DNA methylation marker set
title_short Validated inference of smoking habits from blood with a finite DNA methylation marker set
title_sort validated inference of smoking habits from blood with a finite dna methylation marker set
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861351/
https://www.ncbi.nlm.nih.gov/pubmed/31494793
http://dx.doi.org/10.1007/s10654-019-00555-w
work_keys_str_mv AT maassilvanace validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vidakiathina validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT wilsonrory validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT teumeralexander validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT liufan validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vanmeursjoycebj validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT uitterlindenandreg validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT boomsmadorreti validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT degeusecojc validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT willemsengonneke validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vandongenjenny validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vanderkallencarlajh validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT slagboompeline validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT beekmanmarian validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vanheemstdiana validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT vandenbergleonardh validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT duijtsliesbeth validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT jaddoevincentwv validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT ladwigkarlheinz validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT kunzesonja validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT petersannette validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT ikrammarfan validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT grabehansj validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT felixjaninef validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT waldenbergermelanie validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT francooscarh validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT ghanbarimohsen validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset
AT kaysermanfred validatedinferenceofsmokinghabitsfrombloodwithafinitednamethylationmarkerset