Cargando…

Clinical Risk Score for Predicting Recurrence Following a Cerebral Ischemic Event

Introduction: Recurrent stroke has a higher rate of death and disability. A number of risk scores have been developed to predict short-term and long-term risk of stroke following an initial episode of stroke or transient ischemic attack (TIA) with limited clinical utilities. In this paper, we review...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhary, Durgesh, Abedi, Vida, Li, Jiang, Schirmer, Clemens M., Griessenauer, Christoph J., Zand, Ramin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861423/
https://www.ncbi.nlm.nih.gov/pubmed/31781015
http://dx.doi.org/10.3389/fneur.2019.01106
Descripción
Sumario:Introduction: Recurrent stroke has a higher rate of death and disability. A number of risk scores have been developed to predict short-term and long-term risk of stroke following an initial episode of stroke or transient ischemic attack (TIA) with limited clinical utilities. In this paper, we review different risk score models and discuss their validity and clinical utilities. Methods: The PubMed bibliographic database was searched for original research articles on the various risk scores for risk of stroke following an initial episode of stroke or TIA. The validation of the models was evaluated by examining the internal and external validation process as well as statistical methodology, the study power, as well as the accuracy and metrics such as sensitivity and specificity. Results: Different risk score models have been derived from different study populations. Validation studies for these risk scores have produced conflicting results. Currently, ABCD(2) score with diffusion weighted imaging (DWI) and Recurrence Risk Estimator at 90 days (RRE-90) are the two acceptable models for short-term risk prediction whereas Essen Stroke Risk Score (ESRS) and Stroke Prognosis Instrument-II (SPI-II) can be useful for prediction of long-term risk. Conclusion: The clinical risk scores that currently exist for predicting short-term and long-term risk of recurrent cerebral ischemia are limited in their performance and clinical utilities. There is a need for a better predictive tool which can overcome the limitations of current predictive models. Application of machine learning methods in combination with electronic health records may provide platform for development of new-generation predictive tools.