Cargando…
Bootstrapping Knowledge Graphs From Images and Text
The problem of generating structured Knowledge Graphs (KGs) is difficult and open but relevant to a range of tasks related to decision making and information augmentation. A promising approach is to study generating KGs as a relational representation of inputs (e.g., textual paragraphs or natural im...
Autores principales: | Mao, Jiayuan, Yao, Yuan, Heinrich, Stefan, Hinz, Tobias, Weber, Cornelius, Wermter, Stefan, Liu, Zhiyuan, Sun, Maosong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861514/ https://www.ncbi.nlm.nih.gov/pubmed/31798437 http://dx.doi.org/10.3389/fnbot.2019.00093 |
Ejemplares similares
-
Crossmodal Language Grounding in an Embodied Neurocognitive Model
por: Heinrich, Stefan, et al.
Publicado: (2020) -
Spatial relation learning in complementary scenarios with deep neural networks
por: Lee, Jae Hee, et al.
Publicado: (2022) -
Learning indoor robot navigation using visual and sensorimotor map information
por: Yan, Wenjie, et al.
Publicado: (2013) -
Self-organizing neural integration of pose-motion features for human action recognition
por: Parisi, German I., et al.
Publicado: (2015) -
Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization
por: Parisi, German I., et al.
Publicado: (2018)