Cargando…
Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1
BACKGROUND: Myotonic Dystrophy type 1 (DM1) is a slowly progressive myopathy characterized by varying multisystemic involvement. Several cerebral features such as brain atrophy, ventricular enlargement, and white matter lesions (WMLs) have frequently been described. The aim of this study is to inves...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861566/ https://www.ncbi.nlm.nih.gov/pubmed/31795042 http://dx.doi.org/10.1016/j.nicl.2019.102078 |
_version_ | 1783471387211464704 |
---|---|
author | Labayru, Garazi Diez, Ibai Sepulcre, Jorge Fernández, Esther Zulaica, Miren Cortés, Jesús M. López de Munain, Adolfo Sistiaga, Andone |
author_facet | Labayru, Garazi Diez, Ibai Sepulcre, Jorge Fernández, Esther Zulaica, Miren Cortés, Jesús M. López de Munain, Adolfo Sistiaga, Andone |
author_sort | Labayru, Garazi |
collection | PubMed |
description | BACKGROUND: Myotonic Dystrophy type 1 (DM1) is a slowly progressive myopathy characterized by varying multisystemic involvement. Several cerebral features such as brain atrophy, ventricular enlargement, and white matter lesions (WMLs) have frequently been described. The aim of this study is to investigate the structural organization of the brain that defines the disease through multimodal imaging analysis, and to analyze the relation between structural cerebral changes and DM1 clinical and neuropsychological profiles. METHOD: 31 DM1 patients and 57 healthy controls underwent an MRI scan protocol, including T1, T2 and DTI. Global gray matter (GM), global white matter (WM), and voxel-level Voxel Based Morphometry (VBM) and voxel-level microstructural WM abnormalities through Diffusion Tensor Imaging (DTI) were assessed through group comparisons and linear regression analysis with age, degree of muscular impairment (MIRS score), CTG expansion size and neuropsychological outcomes from a comprehensive assessment. RESULTS: Compared with healthy controls, DM1 patients showed a reduction in both global GM and WM volume; and further regional GM decrease in specific primary sensory, multi-sensory and association cortical regions. Fractional anisotropy (FA) was reduced in both total brain and regional analysis, being most marked in frontal, paralimbic, temporal cortex, and subcortical regions. Higher ratings on muscular impairment and longer CTG expansion sizes predicted a greater volume decrease in GM and lower FA values. Age predicted global GM reduction, specifically in parietal regions. At the cognitive level, the DM1 group showed significant negative correlations between IQ estimate, visuoconstructive and executive neuropsychological scores and both global and regional volume decrease, mainly distributed in the frontal, parietal and subcortical regions. CONCLUSIONS: In this study, we describe the structural brain signatures that delineate the involvement of the CNS in DM1. We show that specific sensory and multi-sensory — as well as frontal cortical areas — display potential vulnerability associated with the hypothesized neurodegenerative nature of DM1 brain abnormalities. |
format | Online Article Text |
id | pubmed-6861566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68615662019-11-22 Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 Labayru, Garazi Diez, Ibai Sepulcre, Jorge Fernández, Esther Zulaica, Miren Cortés, Jesús M. López de Munain, Adolfo Sistiaga, Andone Neuroimage Clin Regular Article BACKGROUND: Myotonic Dystrophy type 1 (DM1) is a slowly progressive myopathy characterized by varying multisystemic involvement. Several cerebral features such as brain atrophy, ventricular enlargement, and white matter lesions (WMLs) have frequently been described. The aim of this study is to investigate the structural organization of the brain that defines the disease through multimodal imaging analysis, and to analyze the relation between structural cerebral changes and DM1 clinical and neuropsychological profiles. METHOD: 31 DM1 patients and 57 healthy controls underwent an MRI scan protocol, including T1, T2 and DTI. Global gray matter (GM), global white matter (WM), and voxel-level Voxel Based Morphometry (VBM) and voxel-level microstructural WM abnormalities through Diffusion Tensor Imaging (DTI) were assessed through group comparisons and linear regression analysis with age, degree of muscular impairment (MIRS score), CTG expansion size and neuropsychological outcomes from a comprehensive assessment. RESULTS: Compared with healthy controls, DM1 patients showed a reduction in both global GM and WM volume; and further regional GM decrease in specific primary sensory, multi-sensory and association cortical regions. Fractional anisotropy (FA) was reduced in both total brain and regional analysis, being most marked in frontal, paralimbic, temporal cortex, and subcortical regions. Higher ratings on muscular impairment and longer CTG expansion sizes predicted a greater volume decrease in GM and lower FA values. Age predicted global GM reduction, specifically in parietal regions. At the cognitive level, the DM1 group showed significant negative correlations between IQ estimate, visuoconstructive and executive neuropsychological scores and both global and regional volume decrease, mainly distributed in the frontal, parietal and subcortical regions. CONCLUSIONS: In this study, we describe the structural brain signatures that delineate the involvement of the CNS in DM1. We show that specific sensory and multi-sensory — as well as frontal cortical areas — display potential vulnerability associated with the hypothesized neurodegenerative nature of DM1 brain abnormalities. Elsevier 2019-11-06 /pmc/articles/PMC6861566/ /pubmed/31795042 http://dx.doi.org/10.1016/j.nicl.2019.102078 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Labayru, Garazi Diez, Ibai Sepulcre, Jorge Fernández, Esther Zulaica, Miren Cortés, Jesús M. López de Munain, Adolfo Sistiaga, Andone Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title | Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title_full | Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title_fullStr | Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title_full_unstemmed | Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title_short | Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1 |
title_sort | regional brain atrophy in gray and white matter is associated with cognitive impairment in myotonic dystrophy type 1 |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861566/ https://www.ncbi.nlm.nih.gov/pubmed/31795042 http://dx.doi.org/10.1016/j.nicl.2019.102078 |
work_keys_str_mv | AT labayrugarazi regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT diezibai regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT sepulcrejorge regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT fernandezesther regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT zulaicamiren regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT cortesjesusm regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT lopezdemunainadolfo regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 AT sistiagaandone regionalbrainatrophyingrayandwhitematterisassociatedwithcognitiveimpairmentinmyotonicdystrophytype1 |