Cargando…
SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis
Machine learning classification is an attractive approach to automatically differentiate patients from healthy subjects, and to predict future disease outcomes. A clinically isolated syndrome (CIS) is often the first presentation of multiple sclerosis (MS), but it is difficult at onset to predict wh...
Autores principales: | Wottschel, Viktor, Chard, Declan T., Enzinger, Christian, Filippi, Massimo, Frederiksen, Jette L., Gasperini, Claudio, Giorgio, Antonio, Rocca, Maria A., Rovira, Alex, De Stefano, Nicola, Tintoré, Mar, Alexander, Daniel C., Barkhof, Frederik, Ciccarelli, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861587/ https://www.ncbi.nlm.nih.gov/pubmed/31734524 http://dx.doi.org/10.1016/j.nicl.2019.102011 |
Ejemplares similares
-
MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice
por: Sastre-Garriga, Jaume, et al.
Publicado: (2020) -
Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME
por: Yousef, Malik, et al.
Publicado: (2021) -
Alignment-free supervised classification of metagenomes by recursive SVM
por: Cui, Hongfei, et al.
Publicado: (2013) -
MRI CRITERIA FOR THE DIAGNOSIS OF MULTIPLE SCLEROSIS: MAGNIMS CONSENSUS GUIDELINES
por: Filippi, M., et al.
Publicado: (2016) -
Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
por: de Sitter, Alexandra, et al.
Publicado: (2020)