Cargando…

Knockdown of lncRNAXLOC_001659 inhibits proliferation and invasion of esophageal squamous cell carcinoma cells

BACKGROUND: Studies have shown that long non-coding RNAs (lncRNAs) play a key role in almost all key physiological and pathological processes, including different types of malignant tumors. Our previous lncRNA microarray results have shown that lncRNA XLOC_001659 is upregulated in esophageal cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Feng-Zhi, Zang, Wen-Qiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861847/
https://www.ncbi.nlm.nih.gov/pubmed/31754291
http://dx.doi.org/10.3748/wjg.v25.i42.6299
Descripción
Sumario:BACKGROUND: Studies have shown that long non-coding RNAs (lncRNAs) play a key role in almost all key physiological and pathological processes, including different types of malignant tumors. Our previous lncRNA microarray results have shown that lncRNA XLOC_001659 is upregulated in esophageal cancer (EC) tissues, with a fold change of 20.9 relative to normal esophageal tissues. But its effect and the molecular biological mechanisms on proliferation and invasion of EC cells remain unclear. AIM: To investigate the effect of lncRNA XLOC_001659 on esophageal squamous cell carcinoma (ESCC) cells and explore the molecular biological mechanisms involved. METHODS: RT-qPCR assay was used to quantify the expression levels of lncRNAXLOC-001659 and miR-490-5p. The proliferative capacity of the cells was determined using CCK8 and colony formation assays, and the effect of lncRNAXLOC-001659 on the invasion of ESCC cells was determined by Transwell assay. Dual-luciferase reporter assay was used to detect the target genes of lncRNAXLOC-001659 and miR-490-5p. RESULTS: The results of RT-qPCR showed that the expression of lncRNAXLOC_001659 was upregulated in ESCC cells. CCK-8 assay showed that knockdown of lncRNAXLOC_001659 significantly inhibited ESCC cell proliferation. Colony formation and Transwell invasion assays showed that knockdown of lncRNAXLOC_001659 or overexpression of miR-490-5p significantly inhibited ESCC cell growth and invasion. Furthermore, lncRNAXLOC_001659 acts as an endogenous sponge by competitively binding to miR-490-5p to downregulate miR-490-5p. Further results confirmed that miR-490-5p targeted PIK3CA, and the recovery of PIK3CA rescued lncRNAXLOC_001659 knockdown or miR-490-5p overexpression-mediated inhibition of cell proliferation and invasion, which suggested the presence of an lncRNAXLOC_001659/miR-490-5p/PIK3CA regulatory axis. CONCLUSION: Knockdown of lncRNA XLOC_001659 inhibits proliferation and invasion of ESCC cells via regulation of miR-490-5p/PIK3CA, suggesting that it may play a role in ESCC tumorigenesis and progression.