Cargando…

Genomic differences among carriage and invasive nontypeable pneumococci circulating in South Africa

Most pneumococci express a polysaccharide capsule, a key virulence factor and target for pneumococcal vaccines. However, pneumococci showing no serological evidence of capsule expression [nontypeable pneumococci (NTPn)] are more frequently isolated from carriage studies than in invasive disease. Lim...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohale, Thabo, Wolter, Nicole, Allam, Mushal, Nzenze, Susan A., Madhi, Shabir A., du Plessis, Mignon, von Gottberg, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861859/
https://www.ncbi.nlm.nih.gov/pubmed/31617841
http://dx.doi.org/10.1099/mgen.0.000299
Descripción
Sumario:Most pneumococci express a polysaccharide capsule, a key virulence factor and target for pneumococcal vaccines. However, pneumococci showing no serological evidence of capsule expression [nontypeable pneumococci (NTPn)] are more frequently isolated from carriage studies than in invasive disease. Limited data exist about the population structure of carriage NTPn from the African continent. We aimed to characterize carriage NTPn and compare them to previously described invasive NTPn. Carriage and invasive NTPn isolates were obtained from South African cross-sectional studies (2009 and 2012) and laboratory-based surveillance for invasive pneumococcal disease (2003–2013), respectively. Isolates were characterized by capsular locus sequence analysis, multilocus sequence typing, antimicrobial non-susceptibility patterns and phylogenetic analysis. NTPn represented 3.7 % (137/3721) of carriage isolates compared to 0.1 % (39/32 824) of invasive isolates (P<0.001), and 24 % (33/137) of individuals were co-colonized with encapsulated pneumococci. Non-susceptibility to cotrimoxazole [84 % (112/133) vs 44 % (17/39)], penicillin [77 % (102/133) vs 36 % (14/39)], erythromycin [53 % (70/133) vs 31 % (12/39)] and clindamycin [36 % (48/133) vs 18 % (7/39)] was higher (P=0.03) among carriage than invasive NTPn. Ninety-one per cent (124/137) of carriage NTPn had complete deletion of the capsular locus and 9 % (13/137) had capsule genes, compared to 44 % (17/39) and 56 % (22/39) of invasive NTPn, respectively. Carriage NTPn were slightly less diverse [Simpson’s diversity index (D)=0.92] compared to invasive NTPn [D=0.97]. Sixty-seven per cent (92/137) of carriage NTPn belonged to a lineage exclusive to NTPn strains compared to 23 % (9/39) of invasive NTPn. We identified 293 and 275 genes that were significantly associated with carriage and invasive NTPn, respectively. NTPn isolates detected in carriage differed from those causing invasive disease, which may explain their success in colonisation or in causing invasive disease.