Cargando…
Integration of Remote Sensing and Social Sensing Data in a Deep Learning Framework for Hourly Urban PM(2.5) Mapping
Fine spatiotemporal mapping of PM(2.5) concentration in urban areas is of great significance in epidemiologic research. However, both the diversity and the complex nonlinear relationships of PM(2.5) influencing factors pose challenges for accurate mapping. To address these issues, we innovatively co...
Autores principales: | Shen, Huanfeng, Zhou, Man, Li, Tongwen, Zeng, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861963/ https://www.ncbi.nlm.nih.gov/pubmed/31653059 http://dx.doi.org/10.3390/ijerph16214102 |
Ejemplares similares
-
The Effects of Fireworks Discharge on Atmospheric PM(2.5) Concentration in the Chinese Lunar New Year
por: Zhang, Xuechen, et al.
Publicado: (2020) -
The Relationships between PM(2.5) and Meteorological Factors in China: Seasonal and Regional Variations
por: Yang, Qianqian, et al.
Publicado: (2017) -
Temporal and Spatial Features of the Correlation between PM(2.5) and O(3) Concentrations in China
por: Chen, Jiajia, et al.
Publicado: (2019) -
Analysis of Airborne Particulate Matter (PM(2.5)) over Hong Kong Using Remote Sensing and GIS
por: Shi, Wenzhong, et al.
Publicado: (2012) -
PM(2.5) Exposure and Health Risk Assessment Using Remote Sensing Data and GIS
por: Xu, Dan, et al.
Publicado: (2022)