Cargando…
Self-Organizing Neural Networks Based on OxRAM Devices under a Fully Unsupervised Training Scheme
A fully-unsupervised learning algorithm for reaching self-organization in neuromorphic architectures is provided in this work. We experimentally demonstrate spike-timing dependent plasticity (STDP) in Oxide-based Resistive Random Access Memory (OxRAM) devices, and propose a set of waveforms in order...
Autores principales: | Pedró, Marta, Martín-Martínez, Javier, Maestro-Izquierdo, Marcos, Rodríguez, Rosana, Nafría, Montserrat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862077/ https://www.ncbi.nlm.nih.gov/pubmed/31653029 http://dx.doi.org/10.3390/ma12213482 |
Ejemplares similares
-
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2016) -
Corrigendum: Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2017) -
SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices
por: Kingra, Sandeep Kaur, et al.
Publicado: (2020) -
“A net for everyone”: fully personalized and unsupervised neural networks trained with longitudinal data from a single patient
por: Strack, Christian, et al.
Publicado: (2023) -
An unsupervised classification scheme for improving predictions of prokaryotic TIS
por: Tech, Maike, et al.
Publicado: (2006)