Cargando…
Selectively Enhanced 3D Printing Process and Performance Analysis of Continuous Carbon Fiber Composite Material
Aiming at the limited mechanical properties of general thermoplastic 3D printed models, a 3D printing process method for selective enhancement of continuous carbon fiber composite material is proposed. Firstly, the selective enhanced double nozzle working mechanism and crafts planning process are pu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862137/ https://www.ncbi.nlm.nih.gov/pubmed/31661813 http://dx.doi.org/10.3390/ma12213529 |
Sumario: | Aiming at the limited mechanical properties of general thermoplastic 3D printed models, a 3D printing process method for selective enhancement of continuous carbon fiber composite material is proposed. Firstly, the selective enhanced double nozzle working mechanism and crafts planning process are put forward. Then, based on the double nozzle carbon fiber 3D printing device, test samples are printed by polylactic acid (PLA) and carbon fiber material, and the test samples are enhanced by inserting layers of continuous carbon fiber material. The performance test of the samples is carried out. Experiment results show that when the volume fraction of continuous carbon fiber material increases gradually from 5% to 40%, the tensile strength increases from 51.22 MPa to 143.11 MPa. The performance improvement curve is fitted through experimental data. Finally, field scanning electron microscopy is used to observe the microscopic distribution of continuous fibers in the samples. The results of the research lay the foundation for the performance planning of 3D printed models. |
---|