Cargando…

The Modulating Effect of p-Coumaric Acid on The Surface Charge Density of Human Glioblastoma Cell Membranes

p-Coumaric acid (p-CoA), a phenolic acid belonging to the hydroxycinnamic acids family, is a compound with tentative anticancer potential. Microelectrophoretic mobility measurements conducted at various pH values of electrolyte solution were applied to study p-CoA effects on electrical properties of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kruszewski, Marcin Andrzej, Kotyńska, Joanna, Kusaczuk, Magdalena, Gál, Miroslav, Naumowicz, Monika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862159/
https://www.ncbi.nlm.nih.gov/pubmed/31653017
http://dx.doi.org/10.3390/ijms20215286
Descripción
Sumario:p-Coumaric acid (p-CoA), a phenolic acid belonging to the hydroxycinnamic acids family, is a compound with tentative anticancer potential. Microelectrophoretic mobility measurements conducted at various pH values of electrolyte solution were applied to study p-CoA effects on electrical properties of human glioblastoma cell membranes. The obtained results demonstrated that after the p-CoA treatment, the surface charge density of cancer cells changed in alkaline pH solutions, while no noticeable changes were observed in cell membranes incubated with p-CoA compared to control at acidic pH solutions. A four-equilibrium model was used to describe the phenomena occurring on the cell membrane surface. The total surface concentrations of both acidic and basic functional groups and their association constants with solution ions were calculated and used to define theoretical curves of membrane surface charge density versus pH. The resulting theoretical curves and the experimental data were compared to verify the reliability and validity of the adopted model. The deviation of both kinds of data obtained at a higher pH may be caused by disregarding interactions between the functional groups of cancer cells. Processes occurring in the cell membranes after their incubation with p-CoA can lead to disorders of existing equilibria, which result in changes in values of the parameters describing these equilibria.