Cargando…

Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides

We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert...

Descripción completa

Detalles Bibliográficos
Autores principales: Deymier, P.A., Runge, K., Hasan, M. A., Calderin, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862212/
https://www.ncbi.nlm.nih.gov/pubmed/31671912
http://dx.doi.org/10.3390/ma12213553
Descripción
Sumario:We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert space with exponential complexity. The amplitudes appearing in the nonseparable superposition of elastic states are complex quantities dependent on the frequency of the external driver. By tuning these complex amplitudes, we can navigate the state’s Hilbert space. This nonlinear elastic system is analogous to a two-partite two-level quantum system.