Cargando…

Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides

We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert...

Descripción completa

Detalles Bibliográficos
Autores principales: Deymier, P.A., Runge, K., Hasan, M. A., Calderin, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862212/
https://www.ncbi.nlm.nih.gov/pubmed/31671912
http://dx.doi.org/10.3390/ma12213553
_version_ 1783471501656195072
author Deymier, P.A.
Runge, K.
Hasan, M. A.
Calderin, L.
author_facet Deymier, P.A.
Runge, K.
Hasan, M. A.
Calderin, L.
author_sort Deymier, P.A.
collection PubMed
description We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert space with exponential complexity. The amplitudes appearing in the nonseparable superposition of elastic states are complex quantities dependent on the frequency of the external driver. By tuning these complex amplitudes, we can navigate the state’s Hilbert space. This nonlinear elastic system is analogous to a two-partite two-level quantum system.
format Online
Article
Text
id pubmed-6862212
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68622122019-12-05 Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides Deymier, P.A. Runge, K. Hasan, M. A. Calderin, L. Materials (Basel) Article We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence of nonseparable superpositions of elastic waves in an externally driven elastic system composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states span a Hilbert space with exponential complexity. The amplitudes appearing in the nonseparable superposition of elastic states are complex quantities dependent on the frequency of the external driver. By tuning these complex amplitudes, we can navigate the state’s Hilbert space. This nonlinear elastic system is analogous to a two-partite two-level quantum system. MDPI 2019-10-29 /pmc/articles/PMC6862212/ /pubmed/31671912 http://dx.doi.org/10.3390/ma12213553 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Deymier, P.A.
Runge, K.
Hasan, M. A.
Calderin, L.
Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title_full Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title_fullStr Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title_full_unstemmed Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title_short Exponentially Complex “Classically Entangled” States in Arrays of One-Dimensional Nonlinear Elastic Waveguides
title_sort exponentially complex “classically entangled” states in arrays of one-dimensional nonlinear elastic waveguides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862212/
https://www.ncbi.nlm.nih.gov/pubmed/31671912
http://dx.doi.org/10.3390/ma12213553
work_keys_str_mv AT deymierpa exponentiallycomplexclassicallyentangledstatesinarraysofonedimensionalnonlinearelasticwaveguides
AT rungek exponentiallycomplexclassicallyentangledstatesinarraysofonedimensionalnonlinearelasticwaveguides
AT hasanma exponentiallycomplexclassicallyentangledstatesinarraysofonedimensionalnonlinearelasticwaveguides
AT calderinl exponentiallycomplexclassicallyentangledstatesinarraysofonedimensionalnonlinearelasticwaveguides