Cargando…
Feasibility of ANFIS-PSO and ANFIS-GA Models in Predicting Thermophysical Properties of Al(2)O(3)-MWCNT/Oil Hybrid Nanofluid
The main purpose of the present paper is to improve the performance of the adaptive neuro-fuzzy inference system (ANFIS) in predicting the thermophysical properties of Al(2)O(3)-MWCNT/thermal oil hybrid nanofluid through mixing using metaheuristic optimization techniques. A literature survey showed...
Autores principales: | Alarifi, Ibrahim M., Nguyen, Hoang M., Naderi Bakhtiyari, Ali, Asadi, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862245/ https://www.ncbi.nlm.nih.gov/pubmed/31690020 http://dx.doi.org/10.3390/ma12213628 |
Ejemplares similares
-
Intelligent route to design efficient CO(2) reduction electrocatalysts using ANFIS optimized by GA and PSO
por: Gheytanzadeh, Majedeh, et al.
Publicado: (2022) -
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
por: Afifi, Firdaus, et al.
Publicado: (2016) -
Improved Estimation of Bio-Oil Yield Based on Pyrolysis Conditions and Biomass Compositions Using GA- and PSO-ANFIS Models
por: Li, Zhimin, et al.
Publicado: (2021) -
Thermal and Fluid Dynamics Performance of MWCNT-Water Nanofluid Based on Thermophysical Properties: An Experimental and Theoretical Study
por: Lyu, Zongjie, et al.
Publicado: (2020) -
Dynamic Response of Angle Ply Laminates with Uncertainties Using MARS, ANN-PSO, GPR and ANFIS
por: Mishra, Bharat Bhushan, et al.
Publicado: (2021)