Cargando…

Multivalent Carbonic Anhydrases Inhibitors †

Biomolecular recognition using a multivalent strategy has been successfully applied, this last decade on several biological targets, especially carbohydrate-processing enzymes, proteases, and phosphorylases. This strategy is based on the fact that multivalent interactions of several inhibitory bindi...

Descripción completa

Detalles Bibliográficos
Autores principales: Carta, Fabrizio, Dumy, Pascal, Supuran, Claudiu T., Winum, Jean-Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862271/
https://www.ncbi.nlm.nih.gov/pubmed/31661796
http://dx.doi.org/10.3390/ijms20215352
Descripción
Sumario:Biomolecular recognition using a multivalent strategy has been successfully applied, this last decade on several biological targets, especially carbohydrate-processing enzymes, proteases, and phosphorylases. This strategy is based on the fact that multivalent interactions of several inhibitory binding units grafted on a presentation platform may enhance the binding affinity and selectivity. The zinc metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) are considered as drug targets for several pathologies, and different inhibitors found clinical applications as diuretics, antiglaucoma agents, anticonvulsants, and anticancer agents/diagnostic tools. Their main drawback is related to the lack of isoform selectivity leading to serious side effects for all pathologies in which they are employed. Thus, the multivalent approach may open new opportunities in the drug design of innovative isoform-selective carbonic anhydrase inhibitors with biomedical applications.