Cargando…

Silicalite-1 Layers as a Biocompatible Nano- and Micro-Structured Coating: An In Vitro Study on MG-63 Cells

Silicalite-1 is a purely siliceous form of zeolite, which does not contain potentially harmful aluminum in its structure as opposed to ZSM-5 aluminosilicate types of zeolite. This paper reports on a study of a silicalite-1 film, deposited on a silicon Si(100) substrate, as a potential anti-corrosive...

Descripción completa

Detalles Bibliográficos
Autores principales: Doubkova, Martina, Nemcakova, Ivana, Jirka, Ivan, Brezina, Vitezslav, Bacakova, Lucie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862472/
https://www.ncbi.nlm.nih.gov/pubmed/31683581
http://dx.doi.org/10.3390/ma12213583
Descripción
Sumario:Silicalite-1 is a purely siliceous form of zeolite, which does not contain potentially harmful aluminum in its structure as opposed to ZSM-5 aluminosilicate types of zeolite. This paper reports on a study of a silicalite-1 film, deposited on a silicon Si(100) substrate, as a potential anti-corrosive and biocompatible coating for orthopaedic implants. Silicalite-1 film was prepared in situ on the surface of Si(100) wafers using a reaction mixture of tetrapropyl-ammonium hydroxide (TPAOH), tetraethyl-orthosilicate (TEOS), and diH(2)O. The physico-chemical properties of the obtained surface were characterized by means of X-ray photoelectron spectroscopy, water contact angle measurement, atomic force microscopy, and scanning electron microscopy. The biocompatibility was assessed by interaction with the MG-63 cell line (human osteosarcoma) in terms of cell adhesion, morphology, proliferation, and viability. The synthesized silicalite-1 film consisted of two layers (b- and a, b-oriented crystals) creating a combination of micro- and nano-scale surface morphology suitable for cell growth. Despite its hydrophobicity, the silicalite-1 film increased the number of initially adhered human osteoblast-like MG-63 cells and the proliferation rate of these cells. The silicalite-1 film also improved the cell viability in comparison with the reference Si(100) substrate. It is therefore a promising candidate for coating of orthopaedic implants.