Cargando…

Ultrasound-Mediated Atom Transfer Radical Polymerization (ATRP)

Ultrasonic agitation is an external stimulus, rapidly developed in recent years in the atom transfer radical polymerization (ATRP) approach. This review presents the current state-of-the-art in the application of ultrasound in ATRP, including an initially-developed, mechanically-initiated solution w...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaborniak, Izabela, Chmielarz, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862563/
https://www.ncbi.nlm.nih.gov/pubmed/31684008
http://dx.doi.org/10.3390/ma12213600
Descripción
Sumario:Ultrasonic agitation is an external stimulus, rapidly developed in recent years in the atom transfer radical polymerization (ATRP) approach. This review presents the current state-of-the-art in the application of ultrasound in ATRP, including an initially-developed, mechanically-initiated solution with the use of piezoelectric nanoparticles, that next goes to the ultrasonication-mediated method utilizing ultrasound as a factor for producing radicals through the homolytic cleavage of polymer chains, or the sonolysis of solvent or other small molecules. Future perspectives in the field of ultrasound in ATRP are presented, focusing on the preparation of more complex architectures with highly predictable molecular weights and versatile properties. The challenges also include biohybrid materials. Recent advances in the ultrasound-mediated ATRP point out this approach as an excellent tool for the synthesis of advanced materials with a wide range of potential industrial applications.