Cargando…
Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface
Steel slag is an industrial solid waste with the largest output in the world. It has the characteristics of wear resistance, good particle shape, large porosity, etc. At the same time, it has good adhesion characteristics with asphalt. If steel slag is used in asphalt pavement, it not only solves th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862639/ https://www.ncbi.nlm.nih.gov/pubmed/31684050 http://dx.doi.org/10.3390/ma12213603 |
_version_ | 1783471600874553344 |
---|---|
author | Liu, Wenhuan Li, Hui Zhu, Huimei Xu, Pinjing |
author_facet | Liu, Wenhuan Li, Hui Zhu, Huimei Xu, Pinjing |
author_sort | Liu, Wenhuan |
collection | PubMed |
description | Steel slag is an industrial solid waste with the largest output in the world. It has the characteristics of wear resistance, good particle shape, large porosity, etc. At the same time, it has good adhesion characteristics with asphalt. If steel slag is used in asphalt pavement, it not only solves the problem of insufficient quality aggregates in asphalt concrete, but can also give full play to the high hardness and high wear resistance of steel slag to improve the performance of asphalt pavement. In this study, a steel slag aggregate was mixed with road petroleum asphalt to prepare a permeable steel slag–asphalt mixture, which was then compared with the permeable limestone–asphalt mixture. According to the Technical Regulations for Permeable Asphalt Pavement (CJJT 190-2012), the permeability, water stability, and Marshall stability of the prepared asphalt mixtures were tested and analyzed. In addition, the high-temperature stability and expansibility were analyzed according to the Experimental Regulations for Highway Engineering Asphalt and Asphalt Mixture (JTG E20-2011). The chemical composition of the steel slag was tested and analyzed by X-ray fluorescence spectrometer (XRF). The mineral composition of the steel slag was tested and analyzed by X-ray diffractometer (XRD). The asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the steel slag asphalt permeable mixture had good permeability, water stability, and Marshall stability, as well as good high-temperature stability and a low expansion rate. The main mineral composition was ferroferric oxide, the RO phase (RO phase is a broad solid solution formed by melting FeO, MgO, and other divalent metal oxides such as MnO), dicalcium silicate, and tricalcium silicate. In the main chemical composition of steel slag, there was no chemical reaction between aluminum oxide, calcium oxide, silicon dioxide, and asphalt, while ferric oxide chemically reacted with asphalt and formed new organosilicon compounds. The main mineral composition of the steel slag (i.e., triiron tetroxide, dicalcium silicate, and tricalcium silicate) reacted chemically with the asphalt and produced new substances. There was no chemical reaction between the RO phase and asphalt. |
format | Online Article Text |
id | pubmed-6862639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68626392019-12-05 Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface Liu, Wenhuan Li, Hui Zhu, Huimei Xu, Pinjing Materials (Basel) Article Steel slag is an industrial solid waste with the largest output in the world. It has the characteristics of wear resistance, good particle shape, large porosity, etc. At the same time, it has good adhesion characteristics with asphalt. If steel slag is used in asphalt pavement, it not only solves the problem of insufficient quality aggregates in asphalt concrete, but can also give full play to the high hardness and high wear resistance of steel slag to improve the performance of asphalt pavement. In this study, a steel slag aggregate was mixed with road petroleum asphalt to prepare a permeable steel slag–asphalt mixture, which was then compared with the permeable limestone–asphalt mixture. According to the Technical Regulations for Permeable Asphalt Pavement (CJJT 190-2012), the permeability, water stability, and Marshall stability of the prepared asphalt mixtures were tested and analyzed. In addition, the high-temperature stability and expansibility were analyzed according to the Experimental Regulations for Highway Engineering Asphalt and Asphalt Mixture (JTG E20-2011). The chemical composition of the steel slag was tested and analyzed by X-ray fluorescence spectrometer (XRF). The mineral composition of the steel slag was tested and analyzed by X-ray diffractometer (XRD). The asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the steel slag asphalt permeable mixture had good permeability, water stability, and Marshall stability, as well as good high-temperature stability and a low expansion rate. The main mineral composition was ferroferric oxide, the RO phase (RO phase is a broad solid solution formed by melting FeO, MgO, and other divalent metal oxides such as MnO), dicalcium silicate, and tricalcium silicate. In the main chemical composition of steel slag, there was no chemical reaction between aluminum oxide, calcium oxide, silicon dioxide, and asphalt, while ferric oxide chemically reacted with asphalt and formed new organosilicon compounds. The main mineral composition of the steel slag (i.e., triiron tetroxide, dicalcium silicate, and tricalcium silicate) reacted chemically with the asphalt and produced new substances. There was no chemical reaction between the RO phase and asphalt. MDPI 2019-11-02 /pmc/articles/PMC6862639/ /pubmed/31684050 http://dx.doi.org/10.3390/ma12213603 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Wenhuan Li, Hui Zhu, Huimei Xu, Pinjing Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title | Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title_full | Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title_fullStr | Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title_full_unstemmed | Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title_short | Properties of a Steel Slag–Permeable Asphalt Mixture and the Reaction of the Steel Slag–Asphalt Interface |
title_sort | properties of a steel slag–permeable asphalt mixture and the reaction of the steel slag–asphalt interface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862639/ https://www.ncbi.nlm.nih.gov/pubmed/31684050 http://dx.doi.org/10.3390/ma12213603 |
work_keys_str_mv | AT liuwenhuan propertiesofasteelslagpermeableasphaltmixtureandthereactionofthesteelslagasphaltinterface AT lihui propertiesofasteelslagpermeableasphaltmixtureandthereactionofthesteelslagasphaltinterface AT zhuhuimei propertiesofasteelslagpermeableasphaltmixtureandthereactionofthesteelslagasphaltinterface AT xupinjing propertiesofasteelslagpermeableasphaltmixtureandthereactionofthesteelslagasphaltinterface |