Cargando…

High-Intensity Interval Circuit Training Versus Moderate-Intensity Continuous Training on Functional Ability and Body Mass Index in Middle-Aged and Older Women: A Randomized Controlled Trial

The literature suggests that high-intensity interval training (HIIT) is more effective than moderate-intensity continuous training (MICT) to improve functional ability. However, there is no evidence on including HIIT in a circuit programme (HIICT). Our objective was to determine what type of trainin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballesta-García, Ismael, Martínez-González-Moro, Ignacio, Rubio-Arias, Jacobo Á., Carrasco-Poyatos, María
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862704/
https://www.ncbi.nlm.nih.gov/pubmed/31671584
http://dx.doi.org/10.3390/ijerph16214205
Descripción
Sumario:The literature suggests that high-intensity interval training (HIIT) is more effective than moderate-intensity continuous training (MICT) to improve functional ability. However, there is no evidence on including HIIT in a circuit programme (HIICT). Our objective was to determine what type of training (HIICT or MICT) induces greater adaptations in the functional ability and body mass index of middle-aged and older women. The study used a quasi-experimental randomized controlled trial with 54 participants (age = 67.8 ± 6.2 years). Participants were randomly allocated to HIICT (n = 18), MICT (n = 18) or a non-exercise control group (CG; n = 18). The participants in the HIICT or MICT groups trained twice a week (1 h/session) for 18 weeks. Forty-one subjects were analysed (HIICT; n = 17, MICT; n = 12, CG; n = 12). Five subjects presented adverse events during the study. Strength, gait, cardiorespiratory fitness, balance and body mass index were measured. A significant training x group interaction was found in the arm curl test, where HIICT was statistically better than MICT and CG. Likewise, HIICT was statistically better than the CG in the BMI interaction. In lower limb strength, gait/dynamic balance and cardiorespiratory fitness, both HIICT and MICT were statistically better than the CG. In conclusion, HIICT generated better adaptations in upper limb strength than MICT. Likewise, HIICT generated better adaptations in body mass index than CG. Finally, both HIICT and MICT had a similar influence on strength, cardiorespiratory fitness and gait/dynamic balance.