Cargando…
The Tumor Target Segmentation of Nasopharyngeal Cancer in CT Images Based on Deep Learning Methods
Radiotherapy is the main treatment strategy for nasopharyngeal carcinoma. A major factor affecting radiotherapy outcome is the accuracy of target delineation. Target delineation is time-consuming, and the results can vary depending on the experience of the oncologist. Using deep learning methods to...
Autores principales: | Li, Shihao, Xiao, Jianghong, He, Ling, Peng, Xingchen, Yuan, Xuedong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862777/ https://www.ncbi.nlm.nih.gov/pubmed/31736433 http://dx.doi.org/10.1177/1533033819884561 |
Ejemplares similares
-
A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI
por: Chen, Quan, et al.
Publicado: (2019) -
Technical Assessment of an Automated Treatment Planning on Dose Escalation of Pancreas Stereotactic Body Radiotherapy
por: Wang, Shuo, et al.
Publicado: (2019) -
Knowledge-Based Statistical Inference Method for Plan Quality Quantification
por: Zhang, Jiang, et al.
Publicado: (2019) -
Goal-Driven Beam Setting Optimization for Whole-Breast Radiation Therapy
por: Wang, Wentao, et al.
Publicado: (2019) -
Can the Student Outperform the Master? A Plan Comparison Between Pinnacle
Auto-Planning and Eclipse knowledge-Based RapidPlan Following a Prostate-Bed Plan
Competition
por: Smith, April, et al.
Publicado: (2019)