Cargando…
High-performance asymmetric optical transmission based on coupled complementary subwavelength gratings
Asymmetric transmission (AT) devices are fundamental elements for optical computing and information processing. We here propose an AT device consisting of a pair of coupled complementary subwavelength gratings. Different from previous works, asymmetric dielectric environment is employed for unidirec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863823/ https://www.ncbi.nlm.nih.gov/pubmed/31745190 http://dx.doi.org/10.1038/s41598-019-53586-4 |
Sumario: | Asymmetric transmission (AT) devices are fundamental elements for optical computing and information processing. We here propose an AT device consisting of a pair of coupled complementary subwavelength gratings. Different from previous works, asymmetric dielectric environment is employed for unidirectional excitation of surface plasmon polaritons (SPPs) and thus asymmetric optical transmission, and near-field coupling effect inherent in the coupled complementary structure is exploited to enhance forward transmission and AT behavior, and determine operation bandwidth as well. The influence of asymmetric dielectric environment, effect of vertical and lateral couplings, interactions of electric- and magnetic-dipole moments and the realization of Kerker conditions, are investigated in depth to unearth the AT mechanism and performance. High-performance AT with large forward transmittance of 0.96 and broad bandwidth of 174 nm is achieved at wavelength 1250 nm. Our work helps people to gain a better understanding of near-filed coupling effect in coupled complementary structures, expand their application fields, and it also offers an alternate way to high-performance AT devices. |
---|