Cargando…

Reduced-tillage management enhances soil properties and crop yields in a alfalfa-corn rotation: Case study of the Songnen Plain, China

The reduced-tillage (Rt) has been proposed as a strategy to improve soil organic carbon and soil total nitrogen pools. However, little is known of the role of the reduced-tillage compared with the organic (Org) and conventional (Con) management in the Songnen Plain of China. We studied the 4 yr effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jishan, Zhu, Ruifen, Zhang, Qiang, Kong, Xiaolei, Sun, Dequan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863839/
https://www.ncbi.nlm.nih.gov/pubmed/31745165
http://dx.doi.org/10.1038/s41598-019-53602-7
Descripción
Sumario:The reduced-tillage (Rt) has been proposed as a strategy to improve soil organic carbon and soil total nitrogen pools. However, little is known of the role of the reduced-tillage compared with the organic (Org) and conventional (Con) management in the Songnen Plain of China. We studied the 4 yr effect of three management strategies (Con, Org and Rt management) on labile soil organic carbon (C) and nitrogen (N) pools, including variation in mineralizable carbon and nitrogen, microbial biomass carbon and nitrogen, dissolved organic carbon and nitrogen in the rotation of alfalfa-corn established in 2009. Soil characteristics including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were quantified in samples collected during the 9 yr rotation of 5yr-alfalfa (Medicago sativa L.) followed by 4 yr corn (Zea mays L.). The mineralizable C was increased in the four years, and although not statistically significant, 12% higher in the fourth year under reduced-tillage than conventional management (268 kg ha(−1)). Soil organic C was increased by 30% under reduced-tillage compared to conventional management (15.5 Mg ha(−1)). Three management strategies showed similar labile N pools in the Con and Org management, but differed in the Rt management. Org management showed significantly lesser mineralizable and inorganic N compared to other strategies, but soil microbial community and comparable crop yield across management strategy in year 4, indicating more efficient N use for organic than other management strategy. In our conditions, reduced-tillage for corn cropping after five years of alfalfa grassland can accumulate labile C and N and improve N utilization to for crop yields in the forage-based rotations. These findings suggest an optimal strategy for using Rt management to enhance soil properties and crop yield in plantation soils and provide a new perspective for understanding the potential role of Rt management in plantation soil.