Cargando…
A Bayesian machine learning approach for drug target identification using diverse data types
Drug target identification is a crucial step in development, yet is also among the most complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that integrates multiple data types to predict drug binding targets. Integrating public data, BANDIT benchmarked a ~90% accuracy o...
Autores principales: | Madhukar, Neel S., Khade, Prashant K., Huang, Linda, Gayvert, Kaitlyn, Galletti, Giuseppe, Stogniew, Martin, Allen, Joshua E., Giannakakou, Paraskevi, Elemento, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863850/ https://www.ncbi.nlm.nih.gov/pubmed/31745082 http://dx.doi.org/10.1038/s41467-019-12928-6 |
Ejemplares similares
-
Prediction of Genetic Interactions Using Machine Learning and Network Properties
por: Madhukar, Neel S., et al.
Publicado: (2015) -
A machine learning and network framework to discover new indications for small molecules
por: Gilvary, Coryandar, et al.
Publicado: (2020) -
A Computational Approach for Identifying Synergistic Drug Combinations
por: Gayvert, Kaitlyn M., et al.
Publicado: (2017) -
Quantitative analysis of taxane drug target engagement of microtubules in circulating tumor cells from metastatic castration resistant prostate cancer patients treated with CRXL301, a nanoparticle of docetaxel
por: Mukhtar, Eiman, et al.
Publicado: (2020) -
Predicting Cancer Prognosis Using Functional Genomics Data Sets
por: Das, Jishnu, et al.
Publicado: (2014)