Cargando…

Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks

The mammalian neocortex is characterized by a variety of neuronal cell types and precise arrangements of synaptic connections, but the processes that generate this diversity are poorly understood. Here we examine how a pool of embryonic progenitor cells consisting of apical intermediate progenitors...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellender, Tommas J., Avery, Sophie V., Mahfooz, Kashif, Scaber, Jakub, von Klemperer, Alexander, Nixon, Sophie L., Buchan, Matthew J., van Rheede, Joram J., Gatti, Aleksandra, Waites, Cameron, Pavlou, Hania J., Sims, David, Newey, Sarah E., Akerman, Colin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863870/
https://www.ncbi.nlm.nih.gov/pubmed/31745093
http://dx.doi.org/10.1038/s41467-019-13206-1
_version_ 1783471779983917056
author Ellender, Tommas J.
Avery, Sophie V.
Mahfooz, Kashif
Scaber, Jakub
von Klemperer, Alexander
Nixon, Sophie L.
Buchan, Matthew J.
van Rheede, Joram J.
Gatti, Aleksandra
Waites, Cameron
Pavlou, Hania J.
Sims, David
Newey, Sarah E.
Akerman, Colin J.
author_facet Ellender, Tommas J.
Avery, Sophie V.
Mahfooz, Kashif
Scaber, Jakub
von Klemperer, Alexander
Nixon, Sophie L.
Buchan, Matthew J.
van Rheede, Joram J.
Gatti, Aleksandra
Waites, Cameron
Pavlou, Hania J.
Sims, David
Newey, Sarah E.
Akerman, Colin J.
author_sort Ellender, Tommas J.
collection PubMed
description The mammalian neocortex is characterized by a variety of neuronal cell types and precise arrangements of synaptic connections, but the processes that generate this diversity are poorly understood. Here we examine how a pool of embryonic progenitor cells consisting of apical intermediate progenitors (aIPs) contribute to diversity within the upper layers of mouse cortex. In utero labeling combined with single-cell RNA-sequencing reveals that aIPs can generate transcriptionally defined glutamatergic cell types, when compared to neighboring neurons born from other embryonic progenitor pools. Whilst sharing layer-associated morphological and functional properties, simultaneous patch clamp recordings and optogenetic studies reveal that aIP-derived neurons exhibit systematic biases in both their intralaminar monosynaptic connectivity and the post-synaptic partners that they target within deeper layers of cortex. Multiple cortical progenitor pools therefore represent an important factor in establishing diversity amongst local and long-range fine-scale glutamatergic connectivity, which generates subnetworks for routing excitatory synaptic information.
format Online
Article
Text
id pubmed-6863870
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68638702019-11-21 Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks Ellender, Tommas J. Avery, Sophie V. Mahfooz, Kashif Scaber, Jakub von Klemperer, Alexander Nixon, Sophie L. Buchan, Matthew J. van Rheede, Joram J. Gatti, Aleksandra Waites, Cameron Pavlou, Hania J. Sims, David Newey, Sarah E. Akerman, Colin J. Nat Commun Article The mammalian neocortex is characterized by a variety of neuronal cell types and precise arrangements of synaptic connections, but the processes that generate this diversity are poorly understood. Here we examine how a pool of embryonic progenitor cells consisting of apical intermediate progenitors (aIPs) contribute to diversity within the upper layers of mouse cortex. In utero labeling combined with single-cell RNA-sequencing reveals that aIPs can generate transcriptionally defined glutamatergic cell types, when compared to neighboring neurons born from other embryonic progenitor pools. Whilst sharing layer-associated morphological and functional properties, simultaneous patch clamp recordings and optogenetic studies reveal that aIP-derived neurons exhibit systematic biases in both their intralaminar monosynaptic connectivity and the post-synaptic partners that they target within deeper layers of cortex. Multiple cortical progenitor pools therefore represent an important factor in establishing diversity amongst local and long-range fine-scale glutamatergic connectivity, which generates subnetworks for routing excitatory synaptic information. Nature Publishing Group UK 2019-11-19 /pmc/articles/PMC6863870/ /pubmed/31745093 http://dx.doi.org/10.1038/s41467-019-13206-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ellender, Tommas J.
Avery, Sophie V.
Mahfooz, Kashif
Scaber, Jakub
von Klemperer, Alexander
Nixon, Sophie L.
Buchan, Matthew J.
van Rheede, Joram J.
Gatti, Aleksandra
Waites, Cameron
Pavlou, Hania J.
Sims, David
Newey, Sarah E.
Akerman, Colin J.
Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title_full Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title_fullStr Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title_full_unstemmed Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title_short Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
title_sort embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863870/
https://www.ncbi.nlm.nih.gov/pubmed/31745093
http://dx.doi.org/10.1038/s41467-019-13206-1
work_keys_str_mv AT ellendertommasj embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT averysophiev embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT mahfoozkashif embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT scaberjakub embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT vonklempereralexander embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT nixonsophiel embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT buchanmatthewj embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT vanrheedejoramj embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT gattialeksandra embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT waitescameron embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT pavlouhaniaj embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT simsdavid embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT neweysarahe embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks
AT akermancolinj embryonicprogenitorpoolsgeneratediversityinfinescaleexcitatorycorticalsubnetworks