Cargando…
Deep Learning Improved Clinical Target Volume Contouring Quality and Efficiency for Postoperative Radiation Therapy in Non-small Cell Lung Cancer
Purpose: To investigate whether a deep learning-assisted contour (DLAC) could provide greater accuracy, inter-observer consistency, and efficiency compared with a manual contour (MC) of the clinical target volume (CTV) for non-small cell lung cancer (NSCLC) receiving postoperative radiotherapy (PORT...
Autores principales: | Bi, Nan, Wang, Jingbo, Zhang, Tao, Chen, Xinyuan, Xia, Wenlong, Miao, Junjie, Xu, Kunpeng, Wu, Linfang, Fan, Quanrong, Wang, Luhua, Li, Yexiong, Zhou, Zongmei, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863957/ https://www.ncbi.nlm.nih.gov/pubmed/31799181 http://dx.doi.org/10.3389/fonc.2019.01192 |
Ejemplares similares
-
Sparing Organs at Risk with Simultaneous Integrated Boost Volumetric Modulated Arc Therapy for Locally Advanced Non-Small Cell Lung Cancer: An Automatic Treatment Planning Study
por: Wang, Daquan, et al.
Publicado: (2020) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018) -
Treatment outcomes of patients with stage III non–small cell lung cancer and interstitial lung diseases receiving intensity‐modulated radiation therapy: A single‐center experience of 85 cases
por: Wu, Linfang, et al.
Publicado: (2022) -
Personalized setting of plan parameters using feasibility dose volume histogram for auto‐planning in Pinnacle system
por: Xia, Wenlong, et al.
Publicado: (2020) -
Deep Learning for Automated Contouring of Gross Tumor Volumes in Esophageal Cancer
por: Jin, Linzhi, et al.
Publicado: (2022)