Cargando…
Strain-rate sensitive ductility in a low-alloy carbon steel after quenching and partitioning treatment
We investigate an extraordinarily high ductility in a low alloy carbon steel at an elevated temperature after a quenching and partitioning (Q&P) treatment. The conventional (quenched and tempered) reference material does not show similar behavior. Interestingly, the Q&P treated material’s du...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864092/ https://www.ncbi.nlm.nih.gov/pubmed/31745209 http://dx.doi.org/10.1038/s41598-019-53303-1 |
Sumario: | We investigate an extraordinarily high ductility in a low alloy carbon steel at an elevated temperature after a quenching and partitioning (Q&P) treatment. The conventional (quenched and tempered) reference material does not show similar behavior. Interestingly, the Q&P treated material’s ductility is considerably reduced at increasing strain rates while strength remains almost constant. These results indicate the presence of a diffusion-controlled deformation mechanism at elevated temperatures. Our research shows that interlath retained austenite is more stable during deformation at higher temperatures, resulting in a delayed transformation to martensite and therefore to a more pronounced contribution to plastic deformation at (and in the vicinity of) the many interfaces inherently present in this multi-phase steel. |
---|