Cargando…
De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic
Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range, and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864284/ https://www.ncbi.nlm.nih.gov/pubmed/31686032 http://dx.doi.org/10.1038/s41589-019-0388-1 |
_version_ | 1783471852958515200 |
---|---|
author | Kim, Jongmin Zhou, Yu Carlson, Paul D. Teichmann, Mario Chaudhary, Soma Simmel, Friedrich C. Silver, Pamela A. Collins, James J. Lucks, Julius B. Yin, Peng Green, Alexander A. |
author_facet | Kim, Jongmin Zhou, Yu Carlson, Paul D. Teichmann, Mario Chaudhary, Soma Simmel, Friedrich C. Silver, Pamela A. Collins, James J. Lucks, Julius B. Yin, Peng Green, Alexander A. |
author_sort | Kim, Jongmin |
collection | PubMed |
description | Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range, and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold, and yield orthogonal sets of up to 15 devices. Automated forward engineering is used to improve toehold repressor dynamic range and SHAPE-Seq is applied to confirm the designed switching mechanism of 3WJ repressors in living cells. We integrate the modular repressors into biological circuits that execute universal NAND and NOR logic and evaluate the four-input expression NOT ((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These capabilities make toehold and 3WJ repressors valuable new tools for biotechnological applications. |
format | Online Article Text |
id | pubmed-6864284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68642842020-05-04 De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic Kim, Jongmin Zhou, Yu Carlson, Paul D. Teichmann, Mario Chaudhary, Soma Simmel, Friedrich C. Silver, Pamela A. Collins, James J. Lucks, Julius B. Yin, Peng Green, Alexander A. Nat Chem Biol Article Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range, and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold, and yield orthogonal sets of up to 15 devices. Automated forward engineering is used to improve toehold repressor dynamic range and SHAPE-Seq is applied to confirm the designed switching mechanism of 3WJ repressors in living cells. We integrate the modular repressors into biological circuits that execute universal NAND and NOR logic and evaluate the four-input expression NOT ((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These capabilities make toehold and 3WJ repressors valuable new tools for biotechnological applications. 2019-11-04 2019-12 /pmc/articles/PMC6864284/ /pubmed/31686032 http://dx.doi.org/10.1038/s41589-019-0388-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Kim, Jongmin Zhou, Yu Carlson, Paul D. Teichmann, Mario Chaudhary, Soma Simmel, Friedrich C. Silver, Pamela A. Collins, James J. Lucks, Julius B. Yin, Peng Green, Alexander A. De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title | De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title_full | De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title_fullStr | De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title_full_unstemmed | De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title_short | De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic |
title_sort | de-novo-designed translation-repressing riboregulators for multi-input cellular logic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864284/ https://www.ncbi.nlm.nih.gov/pubmed/31686032 http://dx.doi.org/10.1038/s41589-019-0388-1 |
work_keys_str_mv | AT kimjongmin denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT zhouyu denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT carlsonpauld denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT teichmannmario denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT chaudharysoma denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT simmelfriedrichc denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT silverpamelaa denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT collinsjamesj denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT lucksjuliusb denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT yinpeng denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic AT greenalexandera denovodesignedtranslationrepressingriboregulatorsformultiinputcellularlogic |