Cargando…

Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model

The Biome-BGC (biome biogeochemical cycles) model is widely used for modeling the net primary productivity (NPP) of ecosystems. However, this model ignores soil water changes during the freeze-thaw process in permafrost regions, which may lead to considerable errors in the NPP estimations. In this c...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chuanhua, Sun, Hao, Wu, Xiaodong, Han, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864309/
https://www.ncbi.nlm.nih.gov/pubmed/31763397
http://dx.doi.org/10.1016/j.dib.2019.104740
Descripción
Sumario:The Biome-BGC (biome biogeochemical cycles) model is widely used for modeling the net primary productivity (NPP) of ecosystems. However, this model ignores soil water changes during the freeze-thaw process in permafrost regions, which may lead to considerable errors in the NPP estimations. In this context we propose a numerical simulation method for improving soil water content during the freeze-thaw process based on the field observation data of soil water and temperature. This approach does not require new parameters and has no impact on other modules. The improvement of soil water content during the freeze-thaw process was then incorporated in the Biome-BGC model for NPP in an alpine meadow in the central Qinghai-Tibetan Plateau (QTP). Interpretation of this data can be found in a research article entitled “An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model” (Li et al., 2019).