Cargando…
Density functional theory calculated data of different electronic states and bond stretch isomers of tris(trifluoroacetylacetonato)-manganese(III)
In this data article, using density functional theory calculations, it is shown that in the gas phase, free from crystal packing effects, different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III) are possible. A careful construction of i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864354/ https://www.ncbi.nlm.nih.gov/pubmed/31763410 http://dx.doi.org/10.1016/j.dib.2019.104758 |
Sumario: | In this data article, using density functional theory calculations, it is shown that in the gas phase, free from crystal packing effects, different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III) are possible. A careful construction of input geometries made it possible to obtain the density functional theory calculated optimized geometries of different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III). The mer CF(3)–CF(3) elongation isomer has the lowest energy (Fig. 1), while in the solid state a mer CH(3)–CH(3) compression tris(trifluoroacetylacetonato)-manganese(III) isomer is experimentally characterized [1]. The rare experimental example of a compression tris(β-diketonato)-manganese(III) structure is ascribed to intermolecular F⋯F and F⋯H interactions between the tris(trifluoroacetylacetonato)-manganese(III) molecules in the solid crystalline state, contributing to the distortion of the coordination polyhedron of tris(trifluoroacetylacetonato)-manganese(III) from the expected elongation Jahn-Teller geometry, to the observed higher energy electronic state with compression Jahn-Teller distortion. |
---|