Cargando…

Reproductive biology and morphology of Apis mellifera jemenitica (Apidae) queens and drones

The current study aimed to investigate the important reproductive biology and morphology of A.m. jemenitica queens and drones through measuring the weight of virgin and mated queens, size and weight of spermathecae, weight of ovaries, number of ovarioles, quantity and viability of semen in queen and...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Sarhan, Ramzi, Adgaba, Nuru, Tadesse, Yilma, Alattal, Yehya, Al-Abbadi, Amal, Single, Arif, Al-Ghamdi, Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864385/
https://www.ncbi.nlm.nih.gov/pubmed/31762630
http://dx.doi.org/10.1016/j.sjbs.2018.10.012
Descripción
Sumario:The current study aimed to investigate the important reproductive biology and morphology of A.m. jemenitica queens and drones through measuring the weight of virgin and mated queens, size and weight of spermathecae, weight of ovaries, number of ovarioles, quantity and viability of semen in queen and drones. Accordingly, the average weights of 0.139 ± 0.01 g and 0.143 ± 0.013 g recorded for virgin and mated queens respectively. The sizes of spermathecae were 1.248 ± 0.103 mm and 1.25 ± 0.022 mm for virgin and mated queens respectively. The mean weight of ovaries was 0.013 ± 0.003 g and the numbers of ovarioles varied from 124 to 163 with the mean of 142.9 ± 9.47 and with no significant difference between virgin and mated queens. The average number of stored sperm per spermathecae of mated queen was estimated to be 4.202 ± 0.613 million with the viability of 80.39%. The average number of sperm per drone recorded was 8,763,950 ± 1,633,203.15 with viability of 79.54 ± 6.70%. In general, the current study revealed that the values recorded for reproductive biology and morphological characters of A. m. jemenitica queens and drones were relatively lower than values recorded for other Apis mellifera races. This mainly could be associated with the body size of the race which is known to be the smallest race among A. mellifera races. Moreover, the harsh environmental conditions of the regions, high temperature, low humidity and limited resources may have contributed for the smaller biological and morphological values. The information will serve as a base in future selection and breeding of program of the race.