Cargando…
Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network
Image sensors are widely used for detecting cracks on concrete surfaces to help proactive and timely management of concrete structures. However, it is a challenging task to reliably detect cracks on damaged surfaces in the real world due to noise and undesired artifacts. In this paper, we propose an...
Autores principales: | Lee, Jieun, Kim, Hee-Sun, Kim, Nayoung, Ryu, Eun-Mi, Kang, Je-Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864448/ https://www.ncbi.nlm.nih.gov/pubmed/31689987 http://dx.doi.org/10.3390/s19214796 |
Ejemplares similares
-
Concrete Surface Crack Recognition Based on Coordinate Attention Neural Networks
por: Zhang, Yuhao, et al.
Publicado: (2022) -
2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements
por: Słoński, Marek, et al.
Publicado: (2020) -
Automatic Concrete Damage Recognition Using Multi-Level Attention Convolutional Neural Network
por: Shin, Hyun Kyu, et al.
Publicado: (2020) -
Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks
por: Fu, Ronghua, et al.
Publicado: (2020) -
SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks
por: Dorafshan, Sattar, et al.
Publicado: (2018)