Cargando…

Chromatic Sensor to Determine Oxygen Presence for Applications in Intelligent Packaging

A chromatic sensor has been designed for the detection of oxygen in package headspace. The sensor is based on the redox change of methylene blue (MB) to its leuco form. Its formulation includes the pigment, glycerol, as a sacrificial electron donor, TiO(2), as a photocatalyst and ethylene-vinyl alco...

Descripción completa

Detalles Bibliográficos
Autores principales: López-Carballo, Gracia, Muriel-Galet, Virginia, Hernández-Muñoz, Pilar, Gavara, Rafael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864462/
https://www.ncbi.nlm.nih.gov/pubmed/31661907
http://dx.doi.org/10.3390/s19214684
Descripción
Sumario:A chromatic sensor has been designed for the detection of oxygen in package headspace. The sensor is based on the redox change of methylene blue (MB) to its leuco form. Its formulation includes the pigment, glycerol, as a sacrificial electron donor, TiO(2), as a photocatalyst and ethylene-vinyl alcohol copolymer (EVOH), as a structural polymer matrix. The final sensor design that allows its manufacture by conventional printing and laminating technologies consists of the sensing polymer matrix (MB-EVOH) sandwiched in a suitable transparent multilayer structure. The outer layers protect the sensor from the external atmosphere and allow visualization of the colour. The inner layer is sufficiently opaque to facilitate sensor reading from the outside, is thick enough to avoid direct contact with food (functional barrier), and is oxygen-permeable to expose the sensing material to the internal package atmosphere. In the absence of oxygen, the sensor becomes white by irradiation with halogen lamps in less than 60 s. All components are substances permitted for food contact except the pigment, but specific migration analysis showed no trace of migration thanks to the functional barrier included in the design.