Cargando…

Dual-NMS: A Method for Autonomously Removing False Detection Boxes from Aerial Image Object Detection Results

In the field of aerial image object detection based on deep learning, it’s difficult to extract features because the images are obtained from a top-down perspective. Therefore, there are numerous false detection boxes. The existing post-processing methods mainly remove overlapped detection boxes, bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Zhiyuan, Wu, Qingxiao, Fu, Shuangfei, Wang, Sikui, Zhang, Zhongyu, Kong, Yanzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864464/
https://www.ncbi.nlm.nih.gov/pubmed/31661940
http://dx.doi.org/10.3390/s19214691
Descripción
Sumario:In the field of aerial image object detection based on deep learning, it’s difficult to extract features because the images are obtained from a top-down perspective. Therefore, there are numerous false detection boxes. The existing post-processing methods mainly remove overlapped detection boxes, but it’s hard to eliminate false detection boxes. The proposed dual non-maximum suppression (dual-NMS) combines the density of detection boxes that are generated for each detected object with the corresponding classification confidence to autonomously remove the false detection boxes. With the dual-NMS as a post-processing method, the precision is greatly improved under the premise of keeping recall unchanged. In vehicle detection in aerial imagery (VEDAI) and dataset for object detection in aerial images (DOTA) datasets, the removal rate of false detection boxes is over 50%. Additionally, according to the characteristics of aerial images, the correlation calculation layer for feature channel separation and the dilated convolution guidance structure are proposed to enhance the feature extraction ability of the network, and these structures constitute the correlation network (CorrNet). Compared with you only look once (YOLOv3), the mean average precision (mAP) of the CorrNet for DOTA increased by 9.78%. Commingled with dual-NMS, the detection effect in aerial images is significantly improved.