Cargando…

Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV

In order to reduce the cost of the flight controller and improve the control accuracy of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state direct and indirect...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, An, Zhou, Zhou, Zhu, Xiaoping, Bai, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864480/
https://www.ncbi.nlm.nih.gov/pubmed/31653040
http://dx.doi.org/10.3390/s19214627
_version_ 1783471892594688000
author Guo, An
Zhou, Zhou
Zhu, Xiaoping
Bai, Fan
author_facet Guo, An
Zhou, Zhou
Zhu, Xiaoping
Bai, Fan
author_sort Guo, An
collection PubMed
description In order to reduce the cost of the flight controller and improve the control accuracy of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state direct and indirect state estimation algorithms. A small hand-launched solar-powered UAV without ailerons is used as the object with which to compare the algorithm structure, estimation accuracy, and platform requirements and application. The three-stage estimation algorithm has a position accuracy of 6 m and is suitable for low-cost small, low control precision UAVs. The precision of full-state direct algorithm is 3.4 m, which is suitable for platforms with low-cost and high-trajectory tracking accuracy. The precision of the full-state indirect method is similar to the direct, but it is more stable for state switching, overall parameters estimation, and can be applied to large platforms. A full-scaled electric hand-launched UAV loaded with the three-stage series algorithm was used for the field test. Results verified the feasibility of the estimation algorithm and it obtained a position estimation accuracy of 23 m.
format Online
Article
Text
id pubmed-6864480
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68644802019-12-23 Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV Guo, An Zhou, Zhou Zhu, Xiaoping Bai, Fan Sensors (Basel) Article In order to reduce the cost of the flight controller and improve the control accuracy of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state direct and indirect state estimation algorithms. A small hand-launched solar-powered UAV without ailerons is used as the object with which to compare the algorithm structure, estimation accuracy, and platform requirements and application. The three-stage estimation algorithm has a position accuracy of 6 m and is suitable for low-cost small, low control precision UAVs. The precision of full-state direct algorithm is 3.4 m, which is suitable for platforms with low-cost and high-trajectory tracking accuracy. The precision of the full-state indirect method is similar to the direct, but it is more stable for state switching, overall parameters estimation, and can be applied to large platforms. A full-scaled electric hand-launched UAV loaded with the three-stage series algorithm was used for the field test. Results verified the feasibility of the estimation algorithm and it obtained a position estimation accuracy of 23 m. MDPI 2019-10-24 /pmc/articles/PMC6864480/ /pubmed/31653040 http://dx.doi.org/10.3390/s19214627 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Guo, An
Zhou, Zhou
Zhu, Xiaoping
Bai, Fan
Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title_full Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title_fullStr Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title_full_unstemmed Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title_short Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
title_sort low-cost sensors state estimation algorithm for a small hand-launched solar-powered uav
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864480/
https://www.ncbi.nlm.nih.gov/pubmed/31653040
http://dx.doi.org/10.3390/s19214627
work_keys_str_mv AT guoan lowcostsensorsstateestimationalgorithmforasmallhandlaunchedsolarpowereduav
AT zhouzhou lowcostsensorsstateestimationalgorithmforasmallhandlaunchedsolarpowereduav
AT zhuxiaoping lowcostsensorsstateestimationalgorithmforasmallhandlaunchedsolarpowereduav
AT baifan lowcostsensorsstateestimationalgorithmforasmallhandlaunchedsolarpowereduav