Cargando…

CO(2) Photoreduction: Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst (Adv. Sci. 22/2019)

In article number https://doi.org/10.1002/advs.201902170, Hong Wang, Geoffrey A. Ozin, and co‐workers present a hetero‐nanostructure, oxygen vacancy, electronic band alignment and carrier lifetime engineering strategy of In(2)O(3−x)(OH)(y)@Nb(2)O(5), enabling the solar‐powered, reverse water gas shi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong, Jia, Jia, Wang, Lu, Butler, Keith, Song, Rui, Casillas, Gilberto, He, Le, Kherani, Nazir P., Perovic, Doug D., Jing, Liqiang, Walsh, Aron, Dittmeyer, Roland, Ozin, Geoffrey A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864512/
http://dx.doi.org/10.1002/advs.201970134
Descripción
Sumario:In article number https://doi.org/10.1002/advs.201902170, Hong Wang, Geoffrey A. Ozin, and co‐workers present a hetero‐nanostructure, oxygen vacancy, electronic band alignment and carrier lifetime engineering strategy of In(2)O(3−x)(OH)(y)@Nb(2)O(5), enabling the solar‐powered, reverse water gas shift reaction to operate at a 44‐fold higher conversion rate than pristine In(2)O(3−x)(OH)(y), with high selectivity and long‐term operational stability, an advance that augers well for the metal oxide hetero‐nanostructure engineering approach to the industrialization of gas‐phase CO(2) photocatalysis. Image credit: Chenxi Qian. [Image: see text]