Cargando…
Multi-Sensor Data Fusion in A Real-Time Support System for On-Duty Firefighters
While working on fire ground, firefighters risk their well-being in a state where any incident might cause not only injuries, but also fatality. They may be incapacitated by unpredicted falls due to floor cracks, holes, structure failure, gas explosion, exposure to toxic gases, or being stuck in nar...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864534/ https://www.ncbi.nlm.nih.gov/pubmed/31683797 http://dx.doi.org/10.3390/s19214746 |
Sumario: | While working on fire ground, firefighters risk their well-being in a state where any incident might cause not only injuries, but also fatality. They may be incapacitated by unpredicted falls due to floor cracks, holes, structure failure, gas explosion, exposure to toxic gases, or being stuck in narrow path, etc. Having acknowledged this need, in this study, we focus on developing an efficient portable system to detect firefighter’s falls, loss of physical performance, and alert high CO level by using a microcontroller carried by a firefighter with data fusion from a 3-DOF (degrees of freedom) accelerometer, 3-DOF gyroscope, 3-DOF magnetometer, barometer, and a MQ7 sensor using our proposed fall detection, loss of physical performance detection, and CO monitoring algorithms. By the combination of five sensors and highly efficient data fusion algorithms to observe the fall event, loss of physical performance, and detect high CO level, we can distinguish among falling, loss of physical performance, and the other on-duty activities (ODAs) such as standing, walking, running, jogging, crawling, climbing up/down stairs, and moving up/down in elevators. Signals from these sensors are sent to the microcontroller to detect fall, loss of physical performance, and alert high CO level. The proposed algorithms can achieve 100% of accuracy, specificity, and sensitivity in our experimental datasets and 97.96%, 100%, and 95.89% in public datasets in distinguishing between falls and ODAs activities, respectively. Furthermore, the proposed algorithm perfectly distinguishes between loss of physical performance and up/down movement in the elevator based on barometric data fusion. If a firefighter is unconscious following the fall or loss of physical performance, an alert message will be sent to their incident commander (IC) via the nRF224L01 module. |
---|