Cargando…

VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs

As an indispensable part of Internet of Things (IoT), wireless sensor networks (WSNs) are more and more widely used with the rapid development of IoT. The neighbor discovery protocols are the premise of communication between nodes and networking in energy-limited self-organizing wireless networks, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuanyuan, Wei, Liangxiong, Guo, Min, Wang, Wei, Sun, Yufang, Wang, Junfeng, Chen, Liangyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864605/
https://www.ncbi.nlm.nih.gov/pubmed/31683685
http://dx.doi.org/10.3390/s19214739
_version_ 1783471921048846336
author Zhang, Yuanyuan
Wei, Liangxiong
Guo, Min
Wang, Wei
Sun, Yufang
Wang, Junfeng
Chen, Liangyin
author_facet Zhang, Yuanyuan
Wei, Liangxiong
Guo, Min
Wang, Wei
Sun, Yufang
Wang, Junfeng
Chen, Liangyin
author_sort Zhang, Yuanyuan
collection PubMed
description As an indispensable part of Internet of Things (IoT), wireless sensor networks (WSNs) are more and more widely used with the rapid development of IoT. The neighbor discovery protocols are the premise of communication between nodes and networking in energy-limited self-organizing wireless networks, and play an important role in WSNs. Because the node energy is limited, neighbor discovery must operate in an energy-efficient manner, that is, under the condition of a given energy budget, the neighbor discovery performance should be as good as possible, such that the discovery latency would be as small as possible and the discovered neighbor percentage as large as possible. The indirect neighbor discovery mainly uses the information of the neighbors that have been found by a pairwise discovery method to more efficiently make a re-planning of the discovery wake-up schedules of the original pairwise neighbor discovery, thereby improving the discovery energy efficiency. The current indirect neighbor discovery methods are mainly divided into two categories: one involves removing the inefficient active slots in the original discovery wake-up schedules, and the other involves adding some efficient active slots. However, the two categories of methods have their own limitations. The former does not consider that this removal operation destroys the integrity of the original discovery wake-up schedules and hence the possibility of discovering new neighbors is reduced, which adversely affects the discovered neighbor percentage. For the latter category, there are still inefficient active slots that were not removed in the re-planned wake-up schedules. The motivation of this paper is to combine the advantages of these two types of indirect neighbor discovery methods, that is, to combine the addition of efficient active slots and the removal of inefficient active slots. To achieve this goal, this paper proposes, for the first time, the concept of virtual nodes in neighbor discovery to maximize the integrity of the original wake-up schedules and achieve the goals of adding efficient active slots and removing inefficient active slots. Specifically, a virtual node is a collaborative group that is formed by nodes within a small range. The nodes in a collaborative group share responsibility for the activating task of one member node, and the combination of these nodes’ wake-up schedules forms the full wake-up schedule of a node that only uses a pairwise method. In addition, this paper proposes a set of efficient group management mechanisms, and the key steps affecting energy efficiency are analyzed theoretically to obtain the energy-optimal parameters. The extended simulation experiments in multiple scenarios show that, compared with other methods, our neighbor discovery protocol based on virtual nodes (VN-NDP) has a significant improvement in average discovery delay and discovered neighbor percentage performance at a given energy budget. Compared with the typical indirect neighbor discovery algorithm EQS, a neighbor discovery with extended quorum system, our proposed VN-NDP method reduces the average discovery delay by up to [Formula: see text] and increases the discovered neighbor percentage by up to [Formula: see text].
format Online
Article
Text
id pubmed-6864605
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68646052019-12-23 VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs Zhang, Yuanyuan Wei, Liangxiong Guo, Min Wang, Wei Sun, Yufang Wang, Junfeng Chen, Liangyin Sensors (Basel) Article As an indispensable part of Internet of Things (IoT), wireless sensor networks (WSNs) are more and more widely used with the rapid development of IoT. The neighbor discovery protocols are the premise of communication between nodes and networking in energy-limited self-organizing wireless networks, and play an important role in WSNs. Because the node energy is limited, neighbor discovery must operate in an energy-efficient manner, that is, under the condition of a given energy budget, the neighbor discovery performance should be as good as possible, such that the discovery latency would be as small as possible and the discovered neighbor percentage as large as possible. The indirect neighbor discovery mainly uses the information of the neighbors that have been found by a pairwise discovery method to more efficiently make a re-planning of the discovery wake-up schedules of the original pairwise neighbor discovery, thereby improving the discovery energy efficiency. The current indirect neighbor discovery methods are mainly divided into two categories: one involves removing the inefficient active slots in the original discovery wake-up schedules, and the other involves adding some efficient active slots. However, the two categories of methods have their own limitations. The former does not consider that this removal operation destroys the integrity of the original discovery wake-up schedules and hence the possibility of discovering new neighbors is reduced, which adversely affects the discovered neighbor percentage. For the latter category, there are still inefficient active slots that were not removed in the re-planned wake-up schedules. The motivation of this paper is to combine the advantages of these two types of indirect neighbor discovery methods, that is, to combine the addition of efficient active slots and the removal of inefficient active slots. To achieve this goal, this paper proposes, for the first time, the concept of virtual nodes in neighbor discovery to maximize the integrity of the original wake-up schedules and achieve the goals of adding efficient active slots and removing inefficient active slots. Specifically, a virtual node is a collaborative group that is formed by nodes within a small range. The nodes in a collaborative group share responsibility for the activating task of one member node, and the combination of these nodes’ wake-up schedules forms the full wake-up schedule of a node that only uses a pairwise method. In addition, this paper proposes a set of efficient group management mechanisms, and the key steps affecting energy efficiency are analyzed theoretically to obtain the energy-optimal parameters. The extended simulation experiments in multiple scenarios show that, compared with other methods, our neighbor discovery protocol based on virtual nodes (VN-NDP) has a significant improvement in average discovery delay and discovered neighbor percentage performance at a given energy budget. Compared with the typical indirect neighbor discovery algorithm EQS, a neighbor discovery with extended quorum system, our proposed VN-NDP method reduces the average discovery delay by up to [Formula: see text] and increases the discovered neighbor percentage by up to [Formula: see text]. MDPI 2019-10-31 /pmc/articles/PMC6864605/ /pubmed/31683685 http://dx.doi.org/10.3390/s19214739 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Yuanyuan
Wei, Liangxiong
Guo, Min
Wang, Wei
Sun, Yufang
Wang, Junfeng
Chen, Liangyin
VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title_full VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title_fullStr VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title_full_unstemmed VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title_short VN-NDP: A Neighbor Discovery Protocol Based on Virtual Nodes in Mobile WSNs
title_sort vn-ndp: a neighbor discovery protocol based on virtual nodes in mobile wsns
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864605/
https://www.ncbi.nlm.nih.gov/pubmed/31683685
http://dx.doi.org/10.3390/s19214739
work_keys_str_mv AT zhangyuanyuan vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT weiliangxiong vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT guomin vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT wangwei vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT sunyufang vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT wangjunfeng vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns
AT chenliangyin vnndpaneighbordiscoveryprotocolbasedonvirtualnodesinmobilewsns