Cargando…

Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array

In order to improve the flow measurement accuracy of oil-water two-phase flow at low flow rate, this paper presents a plug-in conductance sensor array (PICSA) for the measurement of water holdup and cross-correlation velocity. Due to the existence of the insert body in PICSA, the effect of slippage...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Ningde, Zhou, Yiyu, Liang, Xinghe, Wang, Dayang, Zhai, Lusheng, Wei, Jidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864666/
https://www.ncbi.nlm.nih.gov/pubmed/31731564
http://dx.doi.org/10.3390/s19214649
Descripción
Sumario:In order to improve the flow measurement accuracy of oil-water two-phase flow at low flow rate, this paper presents a plug-in conductance sensor array (PICSA) for the measurement of water holdup and cross-correlation velocity. Due to the existence of the insert body in PICSA, the effect of slippage and the non-uniform distribution of dispersed phase on the measurement of oil-water two-phase flow at low flow rate can be reduced. The finite element method is used to analyze the electric field distribution characteristics of the plug-in conductance sensor, and the sensor geometry is optimized. The dynamic experiment of oil-water two-phase flow is carried out where water cut K(w) and mixture velocity U(m) are set in the range of 10–98% and 0.0184–0.2580 m/s respectively. Experimental results show that the PICSA has good resolution in water holdup measurement for dispersed oil-in-water slug flow (D OS/W), transition flow (TF), dispersed oil-in-water bubble flow (D O/W) and very fine dispersed oil-in-water bubble flow (VFD O/W). In addition, the cross-correlation velocity of the oil-water two-phase flow is obtained by using the plug-in upstream and downstream conductance sensor arrays. The relationship between the cross-correlation velocity and mixture velocity is found to be sensitive to the change of flow pattern, but it has a good linear relationship under the same flow pattern. Based on the flow pattern identification, a good prediction result of the mixture velocity is obtained using kinematic wave theory. Finally, a high precision prediction of the individual phase volume fraction of oil-water two-phase flow at low flow rate is achieved by using the drift flux model.