Cargando…
Classification of Power Facility Point Clouds from Unmanned Aerial Vehicles Based on Adaboost and Topological Constraints
Machine learning algorithms can be well suited to LiDAR point cloud classification, but when they are applied to the point cloud classification of power facilities, many problems such as a large number of computational features and low computational efficiency can be encountered. To solve these prob...
Autores principales: | Liu, Yuxuan, Aleksandrov, Mitko, Zlatanova, Sisi, Zhang, Junjun, Mo, Fan, Chen, Xiaojian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864668/ https://www.ncbi.nlm.nih.gov/pubmed/31671626 http://dx.doi.org/10.3390/s19214717 |
Ejemplares similares
-
Handbook of unmanned aerial vehicles
por: Valavanis, Kimon, et al.
Publicado: (2015) -
Guidance of Unmanned Aerial Vehicles
por: Yanushevsky, Rafael
Publicado: (2011) -
New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration
por: Urbančič, Tilen, et al.
Publicado: (2019) -
Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models
por: Aboutalebi, Mahyar, et al.
Publicado: (2020) -
International Symposium on Unmanned Aerial Vehicles
por: Valavanis, Kimon, et al.
Publicado: (2009)