Cargando…
Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors
Plant polyphenols have received considerable attention in recent years due to their ability to undergo oxidation-triggered self-polymerization, forming biocompatible versatile coatings and templated nanoparticles (NPs) that can be leveraged for a variety of biomedical applications. Here we show for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864733/ https://www.ncbi.nlm.nih.gov/pubmed/31652710 http://dx.doi.org/10.3390/molecules24213815 |
_version_ | 1783471950556823552 |
---|---|
author | Sunoqrot, Suhair Al-Shalabi, Eveen Hasan Ibrahim, Lina Zalloum, Hiba |
author_facet | Sunoqrot, Suhair Al-Shalabi, Eveen Hasan Ibrahim, Lina Zalloum, Hiba |
author_sort | Sunoqrot, Suhair |
collection | PubMed |
description | Plant polyphenols have received considerable attention in recent years due to their ability to undergo oxidation-triggered self-polymerization, forming biocompatible versatile coatings and templated nanoparticles (NPs) that can be leveraged for a variety of biomedical applications. Here we show for the first time that untemplated NPs can be conveniently synthesized from the abundant plant polyphenol quercetin (QCT) simply by incubation with an oxidizing agent in a universal organic solvent, followed by self-assembly upon gradual addition of water. The process yielded NPs of around 180–200 nm in size with a range of colors that resembled light to medium-brown skin tones. The NPs were characterized by UV-Vis, FT-IR, and (1)H-NMR spectroscopy and by dynamic light scattering and transmission electron microscopy to understand their physicochemical properties. Antioxidant and cell viability assays were also conducted to demonstrate the NPs’ free-radical scavenging activity and biocompatibility, altogether providing valuable insights into the structure and function of this emerging class of nanomaterials to guide future biomedical applications. |
format | Online Article Text |
id | pubmed-6864733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68647332019-12-23 Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors Sunoqrot, Suhair Al-Shalabi, Eveen Hasan Ibrahim, Lina Zalloum, Hiba Molecules Article Plant polyphenols have received considerable attention in recent years due to their ability to undergo oxidation-triggered self-polymerization, forming biocompatible versatile coatings and templated nanoparticles (NPs) that can be leveraged for a variety of biomedical applications. Here we show for the first time that untemplated NPs can be conveniently synthesized from the abundant plant polyphenol quercetin (QCT) simply by incubation with an oxidizing agent in a universal organic solvent, followed by self-assembly upon gradual addition of water. The process yielded NPs of around 180–200 nm in size with a range of colors that resembled light to medium-brown skin tones. The NPs were characterized by UV-Vis, FT-IR, and (1)H-NMR spectroscopy and by dynamic light scattering and transmission electron microscopy to understand their physicochemical properties. Antioxidant and cell viability assays were also conducted to demonstrate the NPs’ free-radical scavenging activity and biocompatibility, altogether providing valuable insights into the structure and function of this emerging class of nanomaterials to guide future biomedical applications. MDPI 2019-10-23 /pmc/articles/PMC6864733/ /pubmed/31652710 http://dx.doi.org/10.3390/molecules24213815 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sunoqrot, Suhair Al-Shalabi, Eveen Hasan Ibrahim, Lina Zalloum, Hiba Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title | Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title_full | Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title_fullStr | Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title_full_unstemmed | Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title_short | Nature-Inspired Polymerization of Quercetin to Produce Antioxidant Nanoparticles with Controlled Size and Skin Tone-Matching Colors |
title_sort | nature-inspired polymerization of quercetin to produce antioxidant nanoparticles with controlled size and skin tone-matching colors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864733/ https://www.ncbi.nlm.nih.gov/pubmed/31652710 http://dx.doi.org/10.3390/molecules24213815 |
work_keys_str_mv | AT sunoqrotsuhair natureinspiredpolymerizationofquercetintoproduceantioxidantnanoparticleswithcontrolledsizeandskintonematchingcolors AT alshalabieveen natureinspiredpolymerizationofquercetintoproduceantioxidantnanoparticleswithcontrolledsizeandskintonematchingcolors AT hasanibrahimlina natureinspiredpolymerizationofquercetintoproduceantioxidantnanoparticleswithcontrolledsizeandskintonematchingcolors AT zalloumhiba natureinspiredpolymerizationofquercetintoproduceantioxidantnanoparticleswithcontrolledsizeandskintonematchingcolors |