Cargando…
Augmenting Deep Learning Performance in an Evidential Multiple Classifier System
The main objective of this work is to study the applicability of ensemble methods in the context of deep learning with limited amounts of labeled data. We exploit an ensemble of neural networks derived using Monte Carlo dropout, along with an ensemble of SVM classifiers which owes its effectiveness...
Autores principales: | Vandoni, Jennifer, Le Hégarat-Mascle, Sylvie, Aldea, Emanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864766/ https://www.ncbi.nlm.nih.gov/pubmed/31717870 http://dx.doi.org/10.3390/s19214664 |
Ejemplares similares
-
Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization
por: Zair, Salim, et al.
Publicado: (2016) -
Thin Structures Segmentation Using Anisotropic Neighborhoods
por: Ribal, Christophe, et al.
Publicado: (2020) -
Learning and predicting the unknown class using evidential deep learning
por: Nagahama, Akihito
Publicado: (2023) -
Evidential Deep Learning for Guided Molecular Property
Prediction and Discovery
por: Soleimany, Ava P., et al.
Publicado: (2021) -
Evidential deep learning for trustworthy prediction of enzyme commission number
por: Han, So-Ra, et al.
Publicado: (2023)