Cargando…

Evaluation of the Strain Bacillus amyloliquefaciens YP6 in Phoxim Degradation via Transcriptomic Data and Product Analysis

Phoxim, a type of organophosphorus pesticide (OP), is widely used in both agriculture and fisheries. The persistence of phoxim has caused serious environmental pollution problems. In this study, Bacillus amyloliquefaciens YP6 (YP6), which is capable of promoting plant growth and degrading broad-spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Di, Zhang, Liyuan, Meng, Jie, Tian, Qiaopeng, Zhai, Lixin, Hao, Zhikui, Guan, Zhengbing, Cai, Yujie, Liao, Xiangru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864786/
https://www.ncbi.nlm.nih.gov/pubmed/31694203
http://dx.doi.org/10.3390/molecules24213997
Descripción
Sumario:Phoxim, a type of organophosphorus pesticide (OP), is widely used in both agriculture and fisheries. The persistence of phoxim has caused serious environmental pollution problems. In this study, Bacillus amyloliquefaciens YP6 (YP6), which is capable of promoting plant growth and degrading broad-spectrum OPs, was used to study phoxim degradation. Different culture media were applied to evaluate the growth and phoxim degradation of YP6. YP6 can grow rapidly and degrade phoxim efficiently in Luria–Bertani broth (LB broth) medium. Furthermore, it can also utilize phoxim as the sole phosphorus source in a mineral salt medium. Response surface methodology was performed to optimize the degradation conditions of phoxim by YP6 in LB broth medium. The optimum biodegradation conditions were 40 °C, pH 7.20, and an inoculum size of 4.17% (v/v). The phoxim metabolites, O,O-diethylthiophosphoric ester, phoxom, and α-cyanobenzylideneaminooxy phosphonic acid, were confirmed by liquid chromatography–mass spectrometry. Meanwhile, transcriptome analysis and qRT-PCR were performed to give insight into the phoxim-stress response at the transcriptome level. The hydrolase-, oxidase-, and NADPH-cytochrome P450 reductase-encoding genes were significantly upregulated for phoxim hydrolysis, sulfoxidation, and o-dealkylation. Furthermore, the phoxim biodegradation pathways by YP6 were proposed, for the first time, based on transcriptomic data and product analysis.