Cargando…
Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor
Exposure assessment studies are the primary means for understanding links between exposure to chemical and physical agents and adverse health effects. Recently, researchers have proposed using wearable monitors during exposure assessment studies to obtain higher fidelity readings of exposures actual...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864797/ https://www.ncbi.nlm.nih.gov/pubmed/31652820 http://dx.doi.org/10.3390/s19214613 |
_version_ | 1783471963433336832 |
---|---|
author | Chew, Robert Thornburg, Jonathan Jack, Darby Smith, Cara Yang, Qiang Chillrud, Steven |
author_facet | Chew, Robert Thornburg, Jonathan Jack, Darby Smith, Cara Yang, Qiang Chillrud, Steven |
author_sort | Chew, Robert |
collection | PubMed |
description | Exposure assessment studies are the primary means for understanding links between exposure to chemical and physical agents and adverse health effects. Recently, researchers have proposed using wearable monitors during exposure assessment studies to obtain higher fidelity readings of exposures actually experienced by subjects. However, limited research has been conducted to link a wearer’s actions to periods of exposure, a necessary step for estimating inhaled dosage. To aid researchers in these settings, we developed a machine learning model for identifying periods of bicycling activity using passively collected data from the RTI MicroPEM wearable exposure monitor, a lightweight device capable of continuously sampling both air pollution levels and accelerometry parameters. Our best performing model identifies biking activity with a mean leave-one-session-out (LOSO) cross-validation F1 score of 0.832 (unweighted) and 0.979 (weighted). Accelerometer derived features contributed greatly to the model performance, as well as temporal smoothing of the predicted activities. Additionally, we found competitive activity recognition can occur with even relatively low sampling rates, suggesting suitability for exposure assessment studies where continuous data collection for long periods (without recharge) are needed to capture realistic daily routines and exposures. |
format | Online Article Text |
id | pubmed-6864797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68647972019-12-06 Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor Chew, Robert Thornburg, Jonathan Jack, Darby Smith, Cara Yang, Qiang Chillrud, Steven Sensors (Basel) Article Exposure assessment studies are the primary means for understanding links between exposure to chemical and physical agents and adverse health effects. Recently, researchers have proposed using wearable monitors during exposure assessment studies to obtain higher fidelity readings of exposures actually experienced by subjects. However, limited research has been conducted to link a wearer’s actions to periods of exposure, a necessary step for estimating inhaled dosage. To aid researchers in these settings, we developed a machine learning model for identifying periods of bicycling activity using passively collected data from the RTI MicroPEM wearable exposure monitor, a lightweight device capable of continuously sampling both air pollution levels and accelerometry parameters. Our best performing model identifies biking activity with a mean leave-one-session-out (LOSO) cross-validation F1 score of 0.832 (unweighted) and 0.979 (weighted). Accelerometer derived features contributed greatly to the model performance, as well as temporal smoothing of the predicted activities. Additionally, we found competitive activity recognition can occur with even relatively low sampling rates, suggesting suitability for exposure assessment studies where continuous data collection for long periods (without recharge) are needed to capture realistic daily routines and exposures. MDPI 2019-10-23 /pmc/articles/PMC6864797/ /pubmed/31652820 http://dx.doi.org/10.3390/s19214613 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chew, Robert Thornburg, Jonathan Jack, Darby Smith, Cara Yang, Qiang Chillrud, Steven Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title | Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title_full | Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title_fullStr | Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title_full_unstemmed | Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title_short | Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor |
title_sort | identification of bicycling periods using the micropem personal exposure monitor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864797/ https://www.ncbi.nlm.nih.gov/pubmed/31652820 http://dx.doi.org/10.3390/s19214613 |
work_keys_str_mv | AT chewrobert identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor AT thornburgjonathan identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor AT jackdarby identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor AT smithcara identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor AT yangqiang identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor AT chillrudsteven identificationofbicyclingperiodsusingthemicropempersonalexposuremonitor |