Cargando…

Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks

Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. ID-SVDD utili...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Pei, Li, Guanghui, Yuan, Yongming, Kuang, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864849/
https://www.ncbi.nlm.nih.gov/pubmed/31671540
http://dx.doi.org/10.3390/s19214712
Descripción
Sumario:Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. ID-SVDD utilizes the density distribution of data to compensate SVDD. The Parzen-window algorithm is applied to calculate the relative density for each data point in a data set. Meanwhile, we use Mahalanobis distance (MD) to improve the Gaussian function in Parzen-window density estimation. Through combining new relative density weight with SVDD, this approach can efficiently map the data points from sparse space to high-density space. In order to assess the outlier detection performance, the ID-SVDD algorithm was implemented on several datasets. The experimental results demonstrated that ID-SVDD achieved high performance, and could be applied in real water quality monitoring.